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Basic Course Information

Course Title
Digital Electronics/

Digital Logic Design

Course Code EEE- 0714-3107

Credits 03

CIE Marks 90

SEE Marks 60

Exam Hours

2 hours (Mid Exam)

3 hours (Semester 
Final Exam)

Level 4th Semester

Academic 
Session

Summer 2025
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Digital Electronics (EEE-0714-2109)

3

3 Credit Course

Class: 17 weeks (2 classes per week)

Total Class Duration: 1 hrs.

Total=34 Hours

Preparation Leave (PL): 02 weeks

Exam: 04 weeks

Results: 02 weeks

Total: 25 Weeks

Attendance:

Students with more than or equal to 70% attendance in this course

will be eligible to sit for the Semester End Examination (SEE). SEE

is mandatory for all students.



Continuous Assessment 
Strategy

4

Quizzes

Assignment

Presentation

Altogether 4 quizzes may be taken

during the semester, 2 quizzes will be

taken for midterm and 2 quizzes will 

be taken for final term.

Altogether 2 assignments may be

taken during the semester, 1

assignments will be taken for

midterm and 1 assignments will be

taken for final term.

The students will have to form a

group of maximum 3 members. The

topic of the presentation will be

given to each group and students

will have to do the group

presentation on the given topic.



CIE- Continuous Internal Evaluation (90 Marks) SEE- Semester End

Examination (60 Marks)

Bloom’s

Category

Tests

Remember 10

Understand 10

Apply 10

Analyze 10

Evaluate 10

Create 10

Bloom’s

Category

Marks

(out of 90)

Tests
(45)

Quizzes
(15)

External 
Participation in
Curricular/Co-

Curricular 
Activities (15)

Remember 08 08 Bloom’s Affective 
Domain:
(Attitude or will)
Attendance: 15
Copy or attempt to 
copy: −10 Late 
Assignment: -10

Understand 08 07

Apply 08

Analyze 08

Evaluate 08

Create 05

ASSESSMENT PATTERN



Course Learning Outcome (CLO)

Serial No. Course Learning Outcome (CLO) 

CLO-1 Understand and recall the process of 
minimization through K-mapping and tabular 
method. 

CLO-2 Analyze and construct combinational circuits 
and sequential circuits using Logic Gates.

CLO-3 Explain and Examine memory elements using 
circuits.

CLO-4 Construct combinational and sequential 
circuits through VHDL by understanding 
dataflow, behavioral and structural modeling, 
synthesis and simulation of both circuits.
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SYNOPSIS / RATIONALE

 The Digital Electronics course provides EEE students with 

fundamental knowledge of digital systems, covering topics like 

Boolean algebra, logic gates, combinational and sequential 

circuits, and flip-flops. It equips students with the skills to 

analyze, design, and optimize digital circuits, which are essential 

in modern computing, communication systems, automation, and 

embedded technologies. By bridging theoretical concepts with 

practical applications, the course prepares students for advanced 

studies in microprocessors, VLSI, and digital signal processing, 

ensuring they are ready to tackle industry challenges and innovate 

in emerging technologies.
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Course objectives

 To introduce the fundamental concepts of digital logic and 

Boolean algebra.

 To enable students to analyze and design combinational circuits 

using logic gates.

 To provide an understanding of sequential circuits, flip-flops, and 

their applications.

 To develop the ability to implement and troubleshoot digital 

circuits in practical scenarios.

 To prepare students for advanced topics like microprocessors, 

VLSI, and digital signal processing.

 To enhance problem-solving skills for designing optimized 

digital systems used in modern electronics and communication 

technologies.
8



Digital Logic Design               Lectures: 3 hours/week

Digital Electronics    Credits: 3

Seria
l No.

Content of Course
Hour
s

CLOs

1

Analysis and Synthesis of Digital Logic Circuits: 
Number system, codes, and conversion. Boolean algebra, 
De Morgan’s law, logic gates and truth tables, 
combinational logic design, minimization techniques, 
implementation of basic static logic gates in CMOS and 
BiCMOS.

9
CLO-1, 
CLO-2

2
Arithmetic and data handling logic circuits, decoders and 
encoders, multiplexers and combinational circuit design.

8
CLO-2, 
CLO-3

3
Programmable Logic Devices: Logic arrays, Field 
Programmable Logic Arrays, and Programmable Read 
Only Memory.

8
CLO-3, 
CLO-4

4
Sequential Circuits: Different types of latches, flip-flops 
and their design using ASM approach, timing analysis, 
and power optimization of sequential circuits.

9
CLO-3, 
CLO-4

5
Modular sequential logic circuit design: Shift registers, 
counters and their applications.

8 CLO-4



Week Content of Course
ASG/
Quiz/
Pr

Teaching-
Learning 
Strategy

Assessment 
Strategy

Corres-
ponding 
CLOs

1

Introduction to Digital 
Electronics, Basic idea about 
Analog and Digital signals. 
Details about various types of 
number systems.

Lecture, 
Discussion

Written Exam, 
Class 
Participation

CLO-1

Converting base of integer and 
fractional numbers from one 
number system to another.

Lecture, Group 
Examples

Classwork, 
Problem Solving

CLO-1

2
Data Representation and 
Complements.

Quiz-1
Lecture, Visual 
Aids, Group 
Discussion

Quiz, Written 
Exam

CLO-1

3
Addition and Subtraction 
operation of Binary, Octal & 
Hexadecimal Numbers.

ASG
Lecture, 
Practice 
Problems

Assignment, 
Problem Solving

CLO-2

4

Negative binary number 
representation in various methods 
and basic idea about 
complements. Subtraction of other 
number systems using Radix and 
Diminished Radix complement.

Lecture, Group 
Problem 
Solving

Written Exam, 
Group 
Discussion

CLO-2

Course Schedule
Course plan specifying content, CLOs, teaching learning and assessment strategy mapped with CLOs
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Course Schedule (Contd.)

5

Introduction to different types 
of binary codes. Weighted 
codes, Gray code, ASCII code, 
and error-detecting code.

Quiz-2

Lecture, Case 
Studies, 
Problem 
Practice

Quiz, Problem-
Solving

CLO-3

6

Definition of Boolean algebra, 
Boolean theorems, and De-
Morgan’s theorem. 
Simplification using theorems.

Assign
ment

Lecture, 
Hands-on 
Examples, 
Practical Work

Assignment, 
Oral 
Presentation

CLO-3

7
Simplification of Boolean 
Algebra, Properties & K-Map 
Method

Lecture, Board 
Work, 
Practical 
Examples

Problem 
Solving, 
Classwork

CLO-4

8

Binary Logic, AND, OR, NOT, 
NAND, NOR, X-OR, and X-
NOR gates. Formation of 
Boolean algebra using universal 
gates

Quiz-3
Lecture, Case 
Studies, 
Practical Work

Quiz, Problem 
Solving

CLO-3

9
Gate Level Minimization, 
Boolean Functions, Truth Table, 
Canonical Forms

Lecture, 
Group 
Activities, 
Hands-on 
Examples

Written Exam, 
Practical Tasks

CLO-
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Course Schedule (Contd.)

Wee
k

Content of Course
ASG
/Qui
z/Pr

Teaching-
Learning 
Strategy

Assessment 
Strategy

Corres-
pondin
g CLOs

10
Combinational Logic 
Analysis, K-Map with Don’t 
Care Conditions

Mid-
Term 
Exam

Lecture, 
Board 
Examples, 
Group 
Practice

Mid-Term Exam CLO-4

11
BCD to excess 3 and Seven 
Segment Decoder

Lecture, 
Problem-
Solving 
Activities

Written Exam, 
Problem Solving

CLO-5

12
Half adder, full adder, and 
subtractor design, encode, 
decoder

ASG

Lecture, 
Visual Aids, 
Practical 
Examples

Assignment, Oral 
Presentation

CLO-5

13
Design of Muxtiplexer , 
demultiplexer

Lecture, 
Group 
Examples, 
Case Studies

Written Exam, 
Group Problem 
Solving

CLO-5
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Course Schedule (Contd.)

14

SR, D, JK and T flipflops
,Master-Slave flip-flop and 
Edge Triggered circuits. 
Conversion of Flip-flops.

Lecture, 
Practical 
Examples, 
Group 
Discussion

Problem Solving, 
Assignment

CLO-5

15
State Table, State Diagram, 
Mealy and Moore machines.

Quiz-
4

Lecture, Case 
Studies, 
Group 
Problem 
Solving

Quiz, Written 
Exam

CLO-5

16

Counters: Asynchronous and 
Synchronous Counters, 
Up/Down Counters.

Lecture, 
Practical 
Examples, 
Visual Aids

Assignment, 
Written Exam

CLO-6

17

Ring Counter, Johnson 
Counter, Design of 
Sequential Circuits.

Lecture, 
Group 
Activities, 
Hands-on 
Examples

Problem Solving, 
Practical Tasks

CLO-6
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REFERENCE BOOK

14

Video Lecture Playlist

https://youtube.com/playlist?list=PLbfLO9aEfT5f

pYgbTlQKxo4jiwbEADayG&si=1ay1sarJsBxnPn

qV

Digital Design 6th 

Edition By Morris 
Mano

Digital Logic Design 
10th Edition By Tocci
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Basic Definition

16

 Digital Logic Design is the study and 

implementation of electronic circuits that process information 

using binary digits (0 and 1), known as digital signals.

It involves:

•Designing circuits using logic gates (AND, OR, NOT, etc.).

•Understanding Boolean algebra.

•Constructing systems like adders, multiplexers, counters, 

memory units, and finite state machines.



Why study this subject?

Skill / Knowledge Enabled By Digital Logic

System-level 
understanding

Learn how code runs on 
hardware

Problem-solving and 
design

Logic circuit design mirrors 
algorithm development

Embedded & IoT 
development

Essential for microcontroller 
interfacing

Hardware programming
Verilog/FPGA, VLSI, HDL-
based design

Secure system design
Digital lock, authentication, 
cryptographic hardware

Performance optimization
Custom logic for acceleration 
(e.g., ML chips, DSP blocks) 17



Applications of Digital Electronics / Logic Design

 Consumer Electronics

◆ Digital watches and clocks

◆ Washing machines, microwave ovens, remote controls

◆ Smart TVs, audio systems

 Computers and Embedded Systems

◆ CPU and GPU architecture

◆ Memory (RAM/ROM) management

◆ Instruction decoders and control units

 Communication Systems

◆ Modulation/demodulation logic (e.g., QAM, FSK)

◆ Error detection and correction circuits (parity, Hamming code)

◆ Multiplexers in channel selection

18



Applications of Digital Electronics / Logic Design

 Automotive Systems

◆ Engine control units (ECUs)

◆ Parking sensors and collision avoidance systems

◆ Digital dashboards and infotainment units

 Medical Devices

◆ Digital thermometers and ECG machines

◆ Patient monitoring systems

◆ Diagnostic imaging control circuits

 Industrial Automation

◆ Programmable Logic Controllers (PLCs)

◆ Robotic control logic

◆ Conveyor belt and sorting system control
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Applications of Digital Electronics / Logic Design

 Security Systems

◆ Digital locks and access control

◆ Motion detection and alarm logic

◆ Biometric interface logic (FPGA-based)

 Aerospace and Defense

◆ Flight control systems (redundant FSM-based designs)

◆ Radar signal processing

◆ Secure communication protocols

 Networking and Data Centers

◆ Packet routing and switching logic

◆ Data buffering and FIFO/LIFO logic circuits

◆ Traffic prioritization algorithms (digital logic level)

20



Applications of Digital Electronics / Logic Design

 Signal and Image Processing

◆ Digital filters and convolution logic

◆ Real-time image edge detection

◆ Compression algorithms (DCT, Huffman coding)

 Internet of Things (IoT)

◆ Sensor interfacing and signal conditioning

◆ Power-efficient logic control

◆ Edge computing controllers

 Gaming and Entertainment

◆ Gamepad/button logic

◆ Display controllers (LCD/LED driving logic)

◆ Audio synthesis and timing circuits

21



Outline of Chapter 1

 1.1  Digital Systems

 1.2  Binary Numbers

 1.3  Number-base Conversions

 1.4  Octal and Hexadecimal Numbers

 1.5  Complements

 1.6  Signed Binary Numbers

 1.7  Binary Codes

 1.8  Binary Storage and Registers

 1.9  Binary Logic

22



Analog and Digital Signal

 Analog system

◆ The physical quantities or signals may vary continuously over a specified 

range.

 Digital system

◆ The physical quantities or signals can assume only discrete values.

◆ Greater accuracy

t

X(t)

t

X(t)

Analog signal Digital signal 23



Binary Digital Signal

 An information variable represented by physical quantity.

 For digital systems, the variable takes on discrete values.

◆ Two level, or binary values are the most prevalent values.

 Binary values are represented abstractly by:

◆ Digits 0 and 1

◆ Words (symbols) False (F) and True (T)

◆ Words (symbols) Low (L) and High (H) 

◆ And words On and Off

 Binary values are represented by values                                                 

or ranges of values of physical quantities.

 Why Digital

◆ Digital circuits are inexpensive

◆ Easy to reduce noise

◆ Great flexibility in the design. 

t

V(t)

Binary digital signal

Logic 1

Logic 0

undefine
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Decimal Number System

 Base (also called radix) = 10 

◆ 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

 Digit Position

◆ Integer & fraction

 Digit Weight

◆ Weight = (Base) 
Position

 Magnitude

◆ Sum of “Digit x Weight”

 Formal Notation

1 0 -12 -2

5 1 2 7 4

10 1 0.1100 0.01

500 10 2 0.7 0.04

d2*B
2
+d1*B

1
+d0*B

0
+d-1*B

-1
+d-2*B

-2

(512.74)10

25



Octal Number System

 Base = 8 

◆ 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }

 Weights

◆ Weight = (Base) 
Position

 Magnitude

◆ Sum of “Digit x Weight”

 Formal Notation

1 0 -12 -2

8 1 1/864 1/64

5 1 2 7 4

5 *8
2
+1 *8

1
+2 *8

0
+7 *8

-1
+4 *8

-

2

          =(330.9375)10

(512.74)8

26



Binary Number System

 Base = 2 

◆ 2 digits { 0, 1 }, called binary digits or “bits”

 Weights

◆ Weight = (Base) 
Position

 Magnitude

◆ Sum of “Bit x Weight”

 Formal Notation

 Groups of bits       4 bits = Nibble

                                    8 bits = Byte

1 0 -12 -2

2 1 1/24 1/4

1 0 1 0 1

1 *2
2
+0 *2

1
+1 *2

0
+0 *2

-1
+1 *2

-

2

              =(5.25)10

(101.01)2

1 0 1 1

1 1 0 0 0 1 0 1
27



Hexadecimal Number System

 Base = 16 

◆ 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }

 Weights

◆ Weight = (Base) 
Position

 Magnitude

◆ Sum of “Digit x Weight”

 Formal Notation

1 0 -12 -2

16 1 1/16256 1/256

1 E 5 7 A

1 *16
2
+14 *16

1
+5 *16

0
+7 *16

-1
+10 *16

-2

               =(485.4765625)10

(1E5.7A)16

28



The Power of 2

n 2n

0 20=1

1 21=2

2 22=4

3 23=8

4 24=16

5 25=32

6 26=64

7 27=128

n 2n

8 28=256

9 29=512

10 210=1024

11 211=2048

12 212=4096

20 220=1M

30 230=1G

40 240=1T

Mega

Giga

Tera

Kilo

29



Addition

 Decimal Addition

5 5

55+

011

= Ten ≥ Base

➔ Subtract a Base

11 Carry

30



Binary Addition

 Column Addition

1 0 1111

1111 0+

0000 1 11

≥ (2)10

111111

= 61

= 23

= 84

31



Binary Subtraction

 Borrow a “Base” when needed

0 0 1110

1111 0−

0101 1 10

= (10)2

2

2

2 2

1

000

1

= 77

= 23

= 54

32



Binary Multiplication

 Bit by bit

01 1 1 1

01 1 0

00 0 0 0

01 1 1 1

01 1 1 1

0 0 000

0110111 0

x

33



Binary Division

 Bit by bit

11 0 0 0

1- 1 1

10 0 1 0

1- 1 1

1100 0

÷

Q= 1 1

R= 1 1

Quotient value

Reminder

) ( 1 1

34



Number Base Conversions

Decimal

(Base 10)

Octal

(Base 8)

Binary

(Base 2)

Hexadecimal

(Base 16)

Evaluate 
Magnitude

Evaluate 
Magnitude

Evaluate 
Magnitude 35



Week -2
Page(37-45)

36



Decimal (Integer) to Binary Conversion

 Divide the number by the ‘Base’ (=2)

 Take the remainder (either 0 or 1) as a coefficient

 Take the quotient and repeat the division

Example: (13)10

Quotient Remainder Coefficient

Answer:      (13)10 = (a3 a2 a1 a0)2 = (1101)2

MSB           LSB

13/ 2 =      6 1             a0 = 1

6 / 2 =      3 0             a1 = 0

3 / 2 =      1 1             a2 = 1
1 / 2 =      0 1             a3 = 1

37



Decimal (Fraction) to Binary Conversion

 Multiply the number by the ‘Base’ (=2)

 Take the integer (either 0 or 1) as a coefficient

 Take the resultant fraction and repeat the division

Example: (0.625)10

Integer Fraction Coefficient

Answer:      (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2

MSB           LSB

0.625 * 2 =    1    . 25

0.25 * 2 =    0    .    5          a-2 = 0

0.5 * 2 =    1    . 0 a-3 = 1

a-1 = 1

38



Decimal to Octal Conversion

Example: (175)10

Quotient Remainder Coefficient

Answer:      (175)10 = (a2 a1 a0)8 = (257)8

175 / 8 =      21 7             a0 = 7

21 / 8 =      2 5             a1 = 5

2 / 8 =      0 2             a2 = 2

Example: (0.3125)10

Integer Fraction Coefficient

Answer:      (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8

0.3125 * 8 =    2    . 5

0.5 * 8 =    4    .    0          a-2 = 4

a-1 = 2

39



Binary − Octal Conversion

 8 = 23

 Each group of 3 bits represents an octal 

digit

Octal Binary

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Example:

(  1 0 1 1 0 . 0 1  )2

(  2       6    .   2   )8

Assume Zeros

Works both ways (Binary to Octal & Octal to Binary)

40



Binary − Hexadecimal Conversion

 16 = 24

 Each group of 4 bits represents a 

hexadecimal digit

Hex Binary
0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

A 1 0 1 0

B 1 0 1 1

C 1 1 0 0

D 1 1 0 1

E 1 1 1 0

F 1 1 1 1

Example:

(  1 0 1 1 0 . 0 1  )2

( 1      6      .   4   )16

Assume Zeros

Works both ways (Binary to Hex & Hex to Binary)

41



Octal − Hexadecimal Conversion

 Convert to Binary as an intermediate step

Example:

( 0 1 0 1 1 0 . 0 1 0 )2

( 1       6     .    4   )16

Assume Zeros

Works both ways (Octal to Hex & Hex to Octal)

(   2      6    .    2   )8

Assume Zeros

42



Decimal, Binary, Octal and Hexadecimal

Decimal Binary Octal Hex
00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

43



1.5 Complements

 There are two types of complements for each base-r system: the radix complement and 

diminished radix complement. 

 Diminished Radix Complement - (r-1)’s Complement

◆ Given a number N in base r having n digits, the (r–1)’s complement of N is 

defined as:

   (rn –1) – N

 Example for 6-digit decimal numbers:

◆ 9’s complement is (rn – 1)–N = (106–1)–N = 999999–N

◆ 9’s complement of 546700 is 999999–546700 = 453299

 Example for 7-digit binary numbers:

◆ 1’s complement is (rn – 1) – N = (27–1)–N = 1111111–N

◆ 1’s complement of 1011000 is 1111111–1011000 = 0100111

 Observation:

◆ Subtraction from (rn – 1) will never require a borrow

◆ Diminished radix complement can be computed digit-by-digit

◆ For binary: 1 – 0 = 1 and 1 – 1 = 0 44



Complements

 1’s Complement (Diminished Radix Complement)

◆ All ‘0’s become ‘1’s

◆ All ‘1’s become ‘0’s

Example (10110000)2

                 (01001111)2

If you add a number and its 1’s complement …

1 0 1 1 0 0 0 0

+  0 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

45
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Complements

 Radix Complement

 Example: Base-10

 Example: Base-2

The r's complement of an n-digit number N in base r is defined as 

rn – N for N ≠ 0 and as 0 for N = 0. Comparing with the (r − 1) 's 

complement, we note that the r's complement is obtained by adding 1 

to the (r − 1) 's complement, since rn – N = [(rn − 1) – N] + 1.

The 10's complement of 012398 is 987602

The 10's complement of 246700 is 753300  

The 2's complement of 1101100 is 0010100 

The 2's complement of 0110111 is 1001001 

47



Complements

 2’s Complement (Radix Complement)

◆ Take 1’s complement then add 1

◆ Toggle all bits to the left of the first ‘1’ from the right

Example:

Number:

1’s Comp.:

0 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 0 0 1 1 1 1

+                        1

OR

1 0 1 1 0 0 0 0

00001010

48



Complements

 Subtraction with Complements

◆ The subtraction of two n-digit unsigned numbers M – N in base r can be 

done as follows:

49



Complements

 Example 1.5

◆ Using 10's complement, subtract 72532 – 3250.

 Example 1.6 

◆ Using 10's complement, subtract 3250 – 72532.

There is no end carry. 

Therefore, the answer is – (10's complement of 30718) = − 69282. 
50



Complements

 Example 1.7

◆ Given the two binary numbers X = 1010100 and Y = 1000011, perform the 

subtraction (a) X – Y ; and (b) Y − X, by using 2's complement. 

There is no end carry. 

Therefore, the answer is 

Y – X = − (2's complement 

of 1101111) = − 0010001. 

51



Complements

 Subtraction of unsigned numbers can also be done by means of the (r − 1)'s 

complement. Remember that the (r − 1) 's complement is one less then the r's 

complement.

 Example 1.8 

◆ Repeat Example 1.7, but this time using 1's complement. 

There is no end carry, 

Therefore, the answer is Y – 

X = − (1's complement of 

1101110) = − 0010001. 

52



1.6 Signed Binary Numbers

To represent negative integers, we need a notation for negative 

values.

It is customary to represent the sign with a bit placed in the 

leftmost position of the number since binary digits.

The convention is to make the sign bit 0 for positive and 1 for 

negative.

Example:

Table 1.3 lists all possible four-bit signed binary numbers in the 

three representations.
53



Signed Binary Numbers

54



Signed Binary Numbers

 Arithmetic addition

◆ The addition of two numbers in the signed-magnitude system follows the rules of 

ordinary arithmetic. If the signs are the same, we add the two magnitudes and 

give the sum the common sign. If the signs are different, we subtract the smaller 

magnitude from the larger and give the difference the sign if the larger magnitude. 

◆ The addition of two signed binary numbers with negative numbers represented in 

signed-2's-complement form is obtained from the addition of the two numbers, 

including their sign bits. 

◆ A carry out of the sign-bit position is discarded. 

 Example:

55



Signed Binary Numbers

 Arithmetic Subtraction

◆ In 2’s-complement form:

 Example:

1. Take the 2’s complement of the subtrahend (including the sign bit) 

and add it to the minuend (including sign bit). 

2. A carry out of sign-bit position is discarded.

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

A B A B

A B A B

 − + =  + −

 − − =  + +

(− 6) − (− 13) (11111010 − 11110011)

(11111010 + 00001101)

00000111 (+ 7)
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1.7 Binary Codes

 BCD Code

◆ A number with k decimal digits will 

require 4k bits in BCD. 

◆ Decimal 396 is represented in BCD 

with 12bits as 0011 1001 0110, with 

each group of 4 bits representing one 

decimal digit.

◆  A decimal number in BCD is the 

same as its equivalent binary number 

only when the number is between 0 

and 9. 

◆ The binary combinations 1010 

through 1111 are not used and have 

no meaning in BCD.
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Binary Code

 Example:

◆ Consider decimal 185 and its corresponding value in BCD and binary:

  BCD addition 
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Binary Code

 Example:

◆ Consider the addition of 184 + 576 = 760 in BCD:

 Decimal Arithmetic: (+375) + (-240) = +135

Hint 6: using 10’s of BCD
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Binary Codes

 Other Decimal Codes 
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Binary Codes)

 Gray Code

◆ The advantage is that only bit in the 

code group changes in going from 

one number to the next.

» Error detection.

» Representation of analog data.

» Low power design.

000 001

010

100

110 111

101

011

1-1 and onto!! 62



Binary Codes

 American Standard Code for Information Interchange (ASCII) Character Code 
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Binary Codes

 ASCII Character Code
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ASCII Character Codes

 American Standard Code for Information Interchange (Refer to 

Table 1.7)

 A popular code used to represent information sent as character-

based data.

 It uses 7-bits to represent:

◆ 94 Graphic printing characters.

◆ 34 Non-printing characters.

 Some non-printing characters are used for text format (e.g. BS = 

Backspace, CR = carriage return).

 Other non-printing characters are used for record marking and 

flow control (e.g. STX and ETX start and end text areas).
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ASCII Properties

 ASCII has some interesting properties:

◆ Digits 0 to 9 span Hexadecimal values 3016 to 3916

◆ Upper case A-Z span 4116 to 5A16

◆ Lower case a-z span 6116 to 7A16

» Lower to upper case translation (and vice versa) occurs by flipping bit 6.
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Binary Codes

 Error-Detecting Code 

◆ To detect errors in data communication and processing, an Eighth bit is 

sometimes added to the ASCII character to indicate its parity. 

◆ A parity bit is an extra bit included with a message to make the total 

number of 1's either even or odd.

 Example:

◆ Consider the following two characters and their even and odd parity: 
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Binary Codes

 Error-Detecting Code

◆ Redundancy (e.g. extra information), in the form of extra bits, can be 

incorporated into binary code words to detect and correct errors.   

◆ A simple form of redundancy is parity, an extra bit appended onto the code 

word to make the number of 1’s odd or even. Parity can detect all single-

bit errors and some multiple-bit errors.

◆ A code word has even parity if the number of 1’s in the code word is even.

◆ A code word has odd parity if the number of 1’s in the code word is odd.

◆ Example:

10001001

10001001

1

0 (odd parity)Message B:

Message A: (even parity)
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1.8 Binary Storage and Registers

 Registers

◆ A binary cell is a device that possesses two stable states and is capable of storing 

one of the two states.

◆ A register is a group of binary cells. A register with n cells can store any discrete 

quantity of information that contains n bits.

 A binary cell
◆ Two stable state

◆ Store one bit of information

◆ Examples: flip-flop circuits, ferrite cores, capacitor

 A register
◆ A group of binary cells

◆ AX in x86 CPU

 Register Transfer
◆ A transfer of the information stored in one register to another.

◆ One of the major operations in digital system.
◆ An example in next slides.

n cells 2n possible states
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A Digital Computer Example

Synchronous or 

Asynchronous?

Inputs: Keyboard, 

mouse, modem, 

microphone

Outputs: CRT, 

LCD, modem, 

speakers

Memory

Control
unit

Datapath

Input/Output

CPU
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Transfer of information

Figure 1.1 Transfer of information among register



Transfer of information

 The other major component 

of a digital system

◆ Circuit elements to 

manipulate individual bits of 

information

◆ Load-store machine

LD R1; 

LD R2;

ADD R2, R1;

SD R3;

Figure 1.2 Example of binary information processing



1.9 Binary Logic

 Definition of Binary Logic

◆ Binary logic consists of binary variables and a set of logical operations. 

◆ The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, 

with each variable having two and only two distinct possible values: 1 and 0, 

◆ Three basic logical operations: AND, OR, and NOT. 

73



Binary Logic

 Truth Tables, Boolean Expressions, and Logic Gates

x
y z

x y z

0 0 0

0 1 0

1 0 0

1 1 1

x y z

0 0 0

0 1 1

1 0 1

1 1 1

x z

0 1

1 0

AND OR NOT

z = x = x’

x
y z x z

z = x • y = x y z = x + y
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Binary Logic

 Truth Tables, Boolean Expressions, and Logic Gates

x y z

0 0 1

0 1 1

1 0 1

1 1 0

x y z

0 0 1

0 1 0

1 0 0

1 1 0

NAND NOR

z = (𝒙. 𝒚) z =(𝒙 + 𝒚)
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Binary Logic

 Truth Tables, Boolean Expressions, and Logic Gates

x y z

0 0 0

0 1 1

1 0 1

1 1 0

x y z

0 0 1

0 1 0

1 0 0

1 1 1

XOR XNOR

z = ഥ𝒙.y+ x.ഥ𝒚 z = 𝐱. 𝐲 + 𝒙. 𝒚
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Switching Circuits

ORAND
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Binary Logic

 Logic gates

◆ Example of binary signals

0

1

2

3

Logic 1

Logic 0

Un-define

Figure 1.3 Example of binary signals 78



Binary Logic

 Logic gates

◆ Graphic Symbols and Input-Output Signals for Logic gates:

Fig. 1.4 Symbols for digital logic circuits

Fig. 1.5 Input-Output signals for gates 79



Binary Logic

 Logic gates

◆ Graphic Symbols and Input-Output Signals for Logic gates:

Fig. 1.6   Gates with multiple inputs
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Algebras

 What is an algebra?

◆ Mathematical system consisting of

» Set of elements

» Set of operators

» Axioms or postulates

 Why is it important?

◆ Defines rules of “calculations”

 Example: arithmetic on natural numbers

◆ Set of elements: N = {1,2,3,4,…}

◆ Operator: +, –, *

◆ Axioms: associativity, distributivity, closure, identity elements, etc.

 Note: operators with two inputs are called binary

◆ Does not mean they are restricted to binary numbers!

◆ Operator(s) with one input are called unary

82



BASIC DEFINITIONS

 A set is collection of having the same property.

◆ S: set, x and y: element or event

◆ For example: S = {1, 2, 3, 4}

» If x = 2, then xS.

» If y = 5, then y S.

 A binary operator defines on a set S of elements is a rule that 

assigns, to each pair of elements from S, a unique element from S.

◆ For example: given a set S, consider a*b = c and * is a binary operator.

◆ We say that, * is a binary operator if it is specifies a rule for finding c from 

the pair (a, b) and also if a, b, c S. 

◆ On the other hand,  * is not a binary operator if  a, b S,while the rule 

finds c  S.
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BASIC DEFINITIONS

 The most common postulates used to formulate various 
algebraic structures are as follows:

1. Closure: a set S is closed with respect to a binary operator if, for every pair 
of elements of S, the binary operator specifies a rule for obtaining a unique 
element of S. 

◆ For example, natural numbers N={1,2,3,...} is closed w.r.t. the binary operator 
+ by the rule of arithmetic addition, since, for any a, bN, there is a unique 
cN such that 

» a+b = c

» But operator – is not closed for N, because 2-3 = -1 and 2, 3 N, but (-1)N.

2. Associative law: a binary operator * on a set S is said to be associative 
whenever

◆ (x * y) * z = x * (y * z) for all x, y, zS

» (x+y)+z = x+(y+z)

3. Commutative law: a binary operator * on a set S is said to be commutative 
whenever

◆ x * y = y * x for all x, yS

» x+y = y+x
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BASIC DEFINITIONS

4. Identity element: a set S is said to have an identity element with respect to a 

binary operation * on S if there exists an element eS with the property that

◆ e * x = x * e = x for every xS

» 0+x = x+0 =x for every xI . I = {…, -3, -2, -1, 0, 1, 2, 3, …}.

» 1*x = x*1 =x for every xI. I = {…, -3, -2, -1, 0, 1, 2, 3, …}.

5. Inverse: a set having the identity element e with respect to the binary operator 

to have an inverse whenever, for every xS, there exists an element yS such 

that

◆ x * y = e

» The operator + over I, with e = 0, the inverse of an element a is (-a), since a+(-a) = 0.

6. Distributive law: if * and．are two binary operators on a set S, * is said to be 

distributive over . whenever

◆ x * (y．z) = (x * y)．(x * z)

85



George Boole

 Father of Boolean algebra
 He came up with a type of linguistic algebra, the three most 

basic operations of which were (and still are) AND, OR and 

NOT. It was these three functions that formed the basis of his 

premise, and were the only operations necessary to perform 

comparisons or basic mathematical functions. 

 Boole’s system (detailed in his 'An Investigation of the Laws 

of Thought, on Which Are Founded the Mathematical 

Theories of Logic and Probabilities', 1854) was based on a 

binary approach, processing only two objects - the yes-no, 

true-false, on-off, zero-one approach. 
 Surprisingly, given his standing in the academic community, 

Boole's idea was either criticized or completely ignored by 

the majority of his peers. 

 Eventually, one bright student, Claude Shannon (1916-2001),  

picked up the idea and ran with it

86

George Boole (1815 - 1864)



Axiomatic Definition of Boolean Algebra

 We need to define algebra for binary values

◆ Developed by George Boole in 1854

 Huntington postulates for Boolean algebra (1904):

 B = {0, 1} and two binary operations, + and．

◆ Closure with respect to operator + and operator ·

◆ Identity element 0 for operator + and 1 for operator ·

◆ Commutativity with respect to + and ·  

  x+y = y+x,   x·y = y·x

◆ Distributivity of · over +,  and + over ·

   x·(y+z) = (x·y)+(x·z)   and   x+(y·z) = (x+y)·(x+z)

⚫ Complement for every element x is x’ with x+x’=1,  x·x’=0

◆ There are at least two elements x,yB such that  xy
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Boolean Algebra

 Terminology:

◆ Literal: A variable or its complement

◆ Product term: literals connected by •

◆ Sum term: literals connected by +
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Postulates of Two-Valued Boolean 
Algebra

 B = {0, 1} and two binary operations, + and．

 The rules of operations: AND、OR and NOT.

1. Closure (+ and‧)

2. The identity elements

(1) +: 0

(2)．: 1

x y x．y

0 0 0

0 1 0

1 0 0

1 1 1

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

x x'

0 1

1 0

AND OR NOT



Postulates of Two-Valued Boolean 
Algebra

3. The commutative laws

4. The distributive laws

x y z y+z x．(y+z) x．y x．z (x．y)+(x．z)

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1



Postulates of Two-Valued Boolean 
Algebra

5. Complement

◆ x+x'=1 → 0+0'=0+1=1; 1+1'=1+0=1

◆ x．x'=0 → 0．0'=0．1=0; 1．1'=1．0=0

6. Has two distinct elements 1 and 0, with 0 ≠ 1

 

 Note

◆ A set of two elements

◆ + : OR operation; ．: AND operation

◆ A complement operator: NOT operation

◆ Binary logic is a two-valued Boolean algebra



Duality

 The principle of duality is an important concept.  This 

says that if an expression is valid in Boolean algebra, 

the dual of that expression is also valid.

 To form the dual of an expression, replace all + 

operators with . operators, all . operators with + 

operators, all ones with zeros, and all zeros with ones.

 Form the dual of the expression

a + (b.c) = (a + b).(a + c)

 Following the replacement rules…

a.(b + c) = a.b + a.c

 Take care not to alter the location of the parentheses if 

they are present.
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Basic Theorems
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Boolean Theorems

 Huntington’s postulates define some rules

 Need more rules to modify 
 algebraic expressions

◆ Theorems that are derived from postulates

 What is a theorem?

◆ A formula or statement that is derived from postulates 

(or other proven theorems)

 Basic theorems of Boolean algebra

◆ Theorem 1 (a): x + x = x   (b): x · x = x

◆ Looks straightforward, but needs to be proven !

94

Post. 1:  closure
Post. 2:  (a) x+0=x, (b) x·1=x
Post. 3:  (a) x+y=y+x, (b) x·y=y·x
Post. 4:  (a) x(y+z) = xy+xz, 
    (b) x+yz = (x+y)(x+z)
Post. 5:  (a) x+x’=1, (b) x·x’=0



Proof of x+x=x

 We can only use

Huntington postulates:

 Show that x+x=x.

     x+x = (x+x)·1 by 2(b)

   = (x+x)(x+x’) by 5(a)

   = x+xx’  by 4(b)

   = x+0  by 5(b)

   = x  by 2(a)

      Q.E.D.

 We can now use Theorem 1(a) in future proofs

95

Huntington postulates:

Post. 2:  (a) x+0=x, (b) x·1=x
Post. 3:  (a) x+y=y+x, (b) x·y=y·x
Post. 4:  (a) x(y+z) = xy+xz, 

   (b) x+yz = (x+y)(x+z)
Post. 5:  (a) x+x’=1, (b) x·x’=0



Proof of x·x=x

 Similar to previous 

proof

 Show that x·x = x.

     x·x = xx+0  by 2(a)

   = xx+xx’by 5(b)

   = x(x+x’) by 4(a)

   = x·1  by 5(a)

   = x  by 2(b)

      Q.E.D.
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Huntington postulates:

Post. 2: (a) x+0=x, (b) x·1=x
Post. 3: (a) x+y=y+x, (b) x·y=y·x
Post. 4: (a) x(y+z) = xy+xz, 

  (b) x+yz = (x+y)(x+z)
Post. 5: (a) x+x’=1, (b) x·x’=0
Th. 1:   (a) x+x=x



Proof of x+1=1

 Theorem 2(a): x + 1 = 1

 x + 1 = 1．(x + 1) by 2(b)

  =(x + x')(x + 1)  5(a)

  = x + x' 1  4(b)

  = x + x'   2(b)

   = 1   5(a)

 Theorem 2(b): x．0 = 0 by duality

 Theorem 3: (x')' = x

◆ Postulate 5 defines the complement of x, x + x' = 1 and x x' = 0

◆ The complement of x' is x is also (x')'
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Huntington postulates:

Post. 2: (a) x+0=x, (b) x·1=x
Post. 3: (a) x+y=y+x, (b) x·y=y·x
Post. 4: (a) x(y+z) = xy+xz, 
   (b) x+yz = (x+y)(x+z)
Post. 5: (a) x+x’=1, (b) x·x’=0
Th. 1:   (a) x+x=x



Absorption Property (Covering)

 Theorem 6(a): x + xy = x

◆ x + xy = x．1 + xy by 2(b)

 = x (1 + y) 4(a)

 = x (y + 1) 3(a)

 = x．1  Th 2(a)

 = x  2(b)

 Theorem 6(b): x (x + y) = x by duality

 By means of truth table (another way to proof )

x y xy x+xy

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1
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Huntington postulates:

Post. 2: (a) x+0=x, (b) x·1=x
Post. 3: (a) x+y=y+x, (b) x·y=y·x
Post. 4: (a) x(y+z) = xy+xz, 
   (b) x+yz = (x+y)(x+z)
Post. 5: (a) x+x’=1, (b) x·x’=0
Th. 1:   (a) x+x=x



DeMorgan’s Theorem

 Theorem 5(a): (x + y)’ = x’y’

 Theorem 5(b): (xy)’ = x’ + y’

 By means of truth table

x y x’ y’ x+y (x+y)’ x’y’ xy x’+y' (xy)’

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 0
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Consensus Theorem

1. x.y + x’.z + y.z = x.y + x’.z

2. (x+y)•(x’+z)•(y+z) = (x+y)•(x’+z)  -- (dual)

 Proof:

xy + x’z + yz = xy + x’z + (x+x’)yz

   = xy + x’z + xyz + x’yz

   = (xy + xyz) + (x’z + x’zy)

   = xy + x’z
QED (2 true by duality).
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Operator Precedence

 The operator precedence for evaluating Boolean Expression is

◆ Parentheses 

◆ NOT

◆ AND

◆ OR

 Examples

◆ x y' + z

◆ (x y + z)'
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Boolean Functions

 A Boolean function

◆ Binary variables

◆ Binary operators OR and AND

◆ Unary operator NOT

◆ Parentheses

 Examples

◆ F1= x y z'

◆ F2 = x + y'z

◆ F3 = x' y' z + x' y z + x y'

◆ F4 = x y' + x' z



Boolean Functions

 The truth table of 2n entries


 Two Boolean expressions may specify the same function

◆ F3 = F4

x y z F1 F2 F3 F4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0



Boolean Functions

 Implementation with logic gates

◆ F4 is more economical

F4 = x y' + x' z

F3  = x' y' z + x' y z + x y'

F2 = x + y'z
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Algebraic Manipulation

 To minimize Boolean expressions

◆ Literal: a primed or unprimed variable (an input to a gate)

◆ Term: an implementation with a gate

◆ The minimization of the number of literals and the number of terms 

→ a circuit with less equipment

◆ It is a hard problem (no specific rules to follow)

 Example 2.1

1. x(x'+y) = xx' + xy = 0+xy = xy

2. x+x'y = (x+x')(x+y) = 1 (x+y) = x+y

3. (x+y)(x+y') = x+xy+xy'+yy' = x(1+y+y') = x

4. xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + yzx + yzx' = xy(1+z) + 

x'z(1+y) = xy +x'z

5. (x+y)(x'+z)(y+z) = (x+y)(x'+z), by duality from function 4. 

(consensus theorem with duality)



Complement of a Function

 An interchange of 0's for 1's and 1's for 0's in the value of F

◆ By DeMorgan's theorem

◆ (A+B+C)' = (A+X)' let B+C = X 

 = A'X'   by theorem 5(a) (DeMorgan's)

 = A'(B+C)'  substitute B+C = X  

 = A'(B'C')              by theorem 5(a) (DeMorgan's)

 = A'B'C'                 by theorem 4(b) (associative)

 Generalizations: a function is obtained by interchanging 

AND and OR operators and complementing each literal.

◆ (A+B+C+D+ ... +F)' = A'B'C'D'... F'

◆ (ABCD ... F)' = A'+ B'+C'+D' ... +F'



Examples

 Example 2.2

◆ F1' = (x'yz' + x'y'z)' = (x'yz')' (x'y'z)' = (x+y'+z) (x+y+z')

◆ F2' = [x(y'z'+yz)]' = x' + (y'z'+yz)' = x' + (y'z')' (yz)‘

     = x' + (y+z) (y'+z')

       = x' + yz‘+y'z

 Example 2.3: a simpler procedure

◆ Take the dual of the function and complement each literal

1. F1 = x'yz' + x'y'z.  

 The dual of F1 is (x'+y+z') (x'+y'+z).

  Complement each literal: (x+y'+z)(x+y+z') = F1'

2. F2 = x(y' z' + yz).  

 The dual of F2 is x+(y'+z') (y+z).

  Complement each literal: x'+(y+z)(y' +z') = F2'



2.6 Canonical and Standard Forms 

Minterms and Maxterms

 A minterm (standard product): an AND term consists of all 

literals in their normal form or in their complement form.

◆ For example, two binary variables x and y,

» xy, xy', x'y, x'y'

◆ It is also called a standard product.

◆ n variables con be combined to form 2n minterms.

 A maxterm (standard sums): an OR term

◆ It is also call a standard sum.

◆ 2n maxterms.



Minterms and Maxterms

 Each maxterm is the complement of its corresponding 

minterm, and vice versa.



Minterms and Maxterms

 An Boolean function can be expressed by

◆ A truth table

◆ Sum of minterms

◆ f1 = x'y'z + xy'z' + xyz = m1 + m4 +m7 (Minterms)

◆ f2 = x'yz+ xy'z + xyz'+xyz = m3 + m5 +m6 + m7 (Minterms)



Minterms and Maxterms

 The complement of a Boolean function

◆ The minterms that produce a 0

◆ f1' = m0 + m2 +m3 + m5 + m6  = x'y'z'+x'yz'+x'yz+xy'z+xyz'

◆ f1 = (f1')'       

 = (x+y+z)(x+y'+z) (x+y'+z') (x'+y+z')(x'+y'+z) = M0 M2 M3 M5 M6

◆ f2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)=M0M1M2M4

 Any Boolean function can be expressed as

◆ A sum of minterms (“sum” meaning the ORing of terms).

◆ A product of maxterms (“product” meaning the ANDing of terms).

◆ Both boolean functions are said to be in Canonical form.



Sum of Minterms

 Sum of minterms: there are 2n minterms and 22n combinations 

of function with n Boolean variables.

 Example 2.4: express F = A+BC' as a sum of minterms.

◆ F = A+B'C = A (B+B') + B'C = AB +AB' + B'C = AB(C+C') + 

AB'(C+C') + (A+A')B'C = ABC+ABC'+AB'C+AB'C'+A'B'C

◆ F = A'B'C +AB'C' +AB'C+ABC'+ ABC = m1 + m4 +m5 + m6 + m7

◆ F(A, B, C) =  (1, 4, 5, 6, 7)

◆ or, built the truth table first



Product of Maxterms

 Product of maxterms: using distributive law to expand.

◆ x + yz = (x + y)(x + z) = (x+y+zz')(x+z+yy') = 
(x+y+z)(x+y+z')(x+y'+z)

 Example 2.5: express F = xy + x'z as a product of maxterms.

◆ F = xy + x'z = (xy + x')(xy +z) = (x+x')(y+x')(x+z)(y+z) = 
(x'+y)(x+z)(y+z)

◆ x'+y = x' + y + zz' = (x'+y+z)(x'+y+z')

◆ F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z') = M0M2M4M5

◆ F(x, y, z) = (0, 2, 4, 5)



Conversion between Canonical Forms

 The complement of a function expressed as the sum of 

minterms equals the sum of minterms missing from the 

original function.

◆ F(A, B, C) = (1, 4, 5, 6, 7)

◆ Thus, F'(A, B, C) = (0, 2, 3)

◆ By DeMorgan's theorem     

 F(A, B, C) = (0, 2, 3)

 F'(A, B, C) = (1, 4, 5, 6, 7)

◆ mj' = Mj

◆ Sum of minterms = product of maxterms

◆ Interchange the symbols  and  and list those numbers missing from 

the original form

»  of 1's

»  of 0's



  Example

◆ F = xy + xz 

◆ F(x, y, z) = (1, 3, 6, 7)

◆ F(x, y, z) =  (0, 2, 4, 6)



Standard Forms

 Canonical forms are very seldom the ones with the least 

number of literals.

 Standard forms: the terms that form the function may obtain 

one, two, or any number of literals.

◆ Sum of products: F1 = y' + xy+ x'yz'

◆ Product of sums: F2 = x(y'+z)(x'+y+z')

◆ F3 = A'B'CD+ABC'D'



Implementation

 Two-level implementation

 Multi-level implementation

F1 = y' + xy+ x'yz' F2 = x(y'+z)(x'+y+z')



2.7 Other Logic Operations (

 2n rows in the truth table of n binary variables.

 22n
 functions for n binary variables.

 16 functions of two binary variables.

 All the new symbols except for the exclusive-OR symbol are 

not in common use by digital designers.



Boolean Expressions
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2.8 Digital Logic Gates

 Boolean expression: AND, OR and NOT operations

 Constructing gates of other  logic operations

◆ The feasibility and economy;

◆ The possibility of extending gate's inputs;

◆ The basic properties of the binary operations (commutative and 

associative);

◆ The ability of the gate to implement Boolean functions.



Standard Gates

 Consider the 16 functions in Table 2.8 (slide 33)

◆ Two are equal to a constant (F0 and F15).

◆ Four are repeated twice (F4, F5,  F10 and F11).

◆ Inhibition (F2) and implication (F13) are not commutative or 

associative.

◆ The other eight: complement (F12), transfer (F3), AND (F1), OR (F7), 

NAND (F14), NOR (F8), XOR (F6), and equivalence (XNOR) (F9) are 

used as standard gates.

◆ Complement: inverter.

◆ Transfer: buffer (increasing drive strength).

◆ Equivalence: XNOR.



Figure 2.5 Digital logic gates

Summary of Logic Gates



Figure 2.5 Digital logic gates

Summary of Logic Gates



Multiple Inputs

 Extension to multiple inputs

◆ A gate can be extended to multiple inputs.

» If its binary operation is commutative and associative.

◆ AND and OR are commutative and associative.

» OR
− x+y = y+x

− (x+y)+z = x+(y+z) = x+y+z

» AND
− xy = yx

− (x y)z = x(y z) = x y z



Multiple Inputs

◆ NAND and NOR are commutative but not associative → they are not 

extendable.

Figure 2.6 Demonstrating the nonassociativity of the NOR operator; (x ↓ y) ↓ z ≠ x ↓(y ↓ 

z)



Multiple Inputs

◆ Multiple NOR = a complement of OR gate, Multiple NAND = a 

complement of AND.

◆ The cascaded NAND operations = sum of products.

◆ The cascaded NOR operations = product of sums.

Figure 2.7 Multiple-input and cascated NOR and NAND gates



Multiple Inputs

◆ The XOR and XNOR gates are commutative and associative.

◆ Multiple-input XOR gates are uncommon?

◆ XOR is an odd function: it is equal to 1 if the inputs variables have an 

odd number of 1's.

Figure 2.8 3-input XOR gate



Positive and Negative Logic

 Positive and Negative Logic

◆ Two signal values <=> two logic 

values

◆ Positive logic: H=1; L=0

◆ Negative logic: H=0; L=1

 Consider a TTL gate

◆ A positive logic AND gate

◆ A negative logic OR gate

◆ The positive logic is used in this 

book 

Figure 2.9 Signal assignment and logic polarity



Figure 2.10 Demonstration of positive and negative logic

Positive and Negative Logic



2.9 Integrated Circuits

Level of Integration

 An IC (a chip)

 Examples:

◆ Small-scale Integration (SSI): < 10 gates

◆ Medium-scale Integration (MSI): 10 ~ 100 gates

◆ Large-scale Integration (LSI): 100 ~ xk gates

◆ Very Large-scale Integration (VLSI): > xk gates

 VLSI

◆ Small size (compact size)

◆ Low cost

◆ Low power consumption

◆ High reliability

◆ High speed



Digital Logic Families

 Digital logic families: circuit technology

◆ TTL: transistor-transistor logic (dying?)

◆ ECL: emitter-coupled logic (high speed, high power consumption)

◆ MOS: metal-oxide semiconductor (NMOS, high density)

◆ CMOS: complementary MOS (low power)

◆ BiCMOS: high speed, high density



Digital Logic Families

 The characteristics of digital logic families

◆ Fan-out: the number of standard loads that the output of a typical gate 

can drive.

◆ Power dissipation.

◆ Propagation delay: the average transition delay time for the signal to 

propagate from input to output.

◆ Noise margin: the minimum of external noise voltage that caused an 

undesirable change in the circuit output.



CAD

 CAD – Computer-Aided Design

◆ Millions of transistors

◆ Computer-based representation and aid

◆ Automatic the design process

◆ Design entry

» Schematic capture

» HDL – Hardware Description Language
− Verilog, VHDL

◆ Simulation

◆ Physical realization

» ASIC, FPGA, PLD



Chip Design

 Why is it better to have more gates on a single chip?

◆ Easier to build systems

◆ Lower power consumption

◆ Higher clock frequencies

 What are the drawbacks of large circuits?

◆ Complex to design

◆ Chips have design constraints

◆ Hard to test

 Need tools to help develop integrated circuits

◆ Computer Aided Design (CAD) tools

◆ Automate tedious steps of design process

◆ Hardware description language (HDL) describe circuits

◆ VHDL (see the lab) is one such system
136



Week -9
Page(138-159)

137



3-1 Introduction

 Gate-level minimization refers to the design task of finding 

an optimal gate-level implementation of Boolean functions 

describing a digital circuit.



3-2 The Map Method

 The complexity of the digital logic gates 

◆ The complexity of the algebraic expression

 Logic minimization

◆ Algebraic approaches: lack specific rules

◆ The Karnaugh map

» A simple straight forward procedure

» A pictorial form of a truth table

» Applicable if the # of variables < 7

 A diagram made up of squares

◆ Each square represents one minterm



Review of Boolean Function

 Boolean function

◆ Sum of minterms

◆ Sum of products (or product of sum) in the simplest form

◆ A minimum number of terms

◆ A minimum number of literals

◆ The simplified expression may not be unique



Two-Variable Map

 A two-variable map

◆ Four minterms

◆ x' = row 0; x = row 1

◆ y' = column 0; y = column 

1

◆ A truth table in square 

diagram

◆ Fig. 3.2(a): xy = m3

◆ Fig. 3.2(b): x+y = x'y+xy' 

+xy = m1+m2+m3

Figure 3.2 Representation of functions in the map

Figure 3.1 Two-variable Map



A Three-variable Map

 A three-variable map

◆ Eight minterms

◆ The Gray code sequence

◆ Any two adjacent squares in the map differ by only on variable

» Primed in one square and unprimed in the other

» e.g., m5 and m7 can be simplified

» m5+ m7 = xy'z + xyz = xz (y'+y) = xz

Figure 3.3 Three-variable Map



A Three-variable Map

◆ m0 and m2 (m4 and m6) are adjacent

◆ m0+ m2 = x'y'z' + x'yz' = x'z' (y'+y) = x'z'   

◆ m4+ m6 = xy'z' + xyz' = xz' (y'+y) = xz'



Example 3.1

 Example 3.1: simplify the Boolean function F(x, y, z) = (2, 3, 

4, 5)

◆ F(x, y, z) = (2, 3, 4, 5) = x'y + xy'

Figure 3.4 Map for Example 3.1, F(x, y, z) = Σ(2, 3, 4, 5) = x'y + xy'



Example 3.2

 Example 3.2: simplify F(x, y, z) = (3, 4, 6, 7) 

◆ F(x, y, z) = (3, 4, 6, 7) = yz+ xz'

Figure 3.5 Map for Example 3-2; F(x, y, z) = Σ(3, 4, 6, 7) = yz + xz'



Four adjacent Squares

 Consider four adjacent squares

◆ 2, 4, and 8 squares

◆ m0+m2+m4+m6 = x'y'z'+x'yz'+xy'z'+xyz' = x'z'(y'+y) +xz'(y'+y) = x'z' 

+ xz‘ = z'

◆ m1+m3+m5+m7 = x'y'z+x'yz+xy'z+xyz =x'z(y'+y) + xz(y'+y) =x'z + 

xz = z

Figure 3.3 Three-variable Map



Example 3.3

 Example 3.3: simplify F(x, y, z) = (0, 2, 4, 5, 6)

◆ F(x, y, z) = (0, 2, 4, 5, 6) = z'+ xy'

Figure 3.6 Map for Example 3-3, F(x, y, z) = Σ(0, 2, 4, 5, 6) = z' +xy'



Example 3.4

 Example 3.4: let F = A'C + A'B + AB'C + BC

a) Express it in sum of minterms.

b) Find the minimal sum of products expression.

Ans:

 F(A, B, C) = (1, 2, 3, 5, 7) = C + A'B

Figure 3.7 Map for Example 3.4, A'C + A'B + AB'C + BC = C + A'B



3.3 Four-Variable Map

 The map

◆ 16 minterms

◆ Combinations of 2, 4, 8, and 16 adjacent squares

Figure 3.8 Four-variable Map



Example 3.5

 Example 3.5: simplify F(w, x, y, z) = (0, 1, 2, 4, 5, 6, 8, 9, 

12, 13, 14)

F = y'+w'z'+xz'

Figure 3.9 Map for Example 3-5; F(w, x, y, z) = Σ(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w' z' +xz'



Example 3.6

 Example 3-6: simplify F = ABC + BCD + ABCD + 

ABC

Figure 3.9 Map for Example 3-6; ABC + BCD + ABCD + ABC= BD + 

BC +ACD



Prime Implicants

 Prime Implicants 

◆ All the minterms are covered.

◆ Minimize the number of terms.

◆ A prime implicant: a product term obtained by combining the 

maximum possible number of adjacent squares (combining all 

possible maximum numbers of squares).

◆ Essential P.I.: a minterm is covered by only one prime implicant.

◆ The essential P.I. must be included.



Prime Implicants

 Consider F(A, B, C, D) = Σ(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

◆ The simplified expression may not be unique 

◆ F = BD+B'D'+CD+AD = BD+B'D'+CD+AB' 

       = BD+B'D'+B'C+AD = BD+B'D'+B'C+AB'

Figure 3.11 Simplification Using Prime Implicants



3.4 Five-Variable Map

 Map for more than four variables becomes complicated
◆ Five-variable map: two four-variable map (one on the top of the 

other).

Figure 3.12 Five-variable Map



Example 3.7

 Example 3.7: simplify F = (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 

31)

F = A'B'E'+BD'E+ACE



3-5 Product of Sums Simplification

 Approach #1

◆ Simplified F' in the form of sum of products 

◆ Apply DeMorgan's theorem F = (F')' 

◆ F': sum of products → F: product of sums

 Approach #2: duality

◆ Combinations of maxterms (it was minterms)

◆ M0M1 = (A+B+C+D)(A+B+C+D') = (A+B+C)+(DD') = A+B+C

M0 M1 M3 M2

M4 M5 M7 M6

M12 M13 M15 M14

M8 M9 M11 M10

00

01

11

10

00 01 11 10AB

CD



Example 3.8

 Example 3.8: simplify F = (0, 1, 2, 5, 8, 9, 10) into (a) sum-
of-products form, and (b) product-of-sums form:

Figure 3.14 Map for Example 3.8, F(A, B, C, D)= (0, 1, 2, 5, 8, 9, 10) 

= B'D'+B'C'+A'C'D

a) F(A, B, C, D)= (0, 1, 2, 5, 8,   

9, 10) = B'D'+B'C'+A'C'D

b) F' = AB+CD+BD'
» Apply DeMorgan's theorem; 

F=(A'+B')(C'+D')(B'+D)

» Or think in terms of maxterms



Example 3.8 (cont.)

 Gate implementation of the function of Example 3.8

Figure 3.15 Gate Implementation of the Function of Example 3.8

Product-of sums formSum-of products form



Sum-of-Minterm Procedure

 Consider the function defined in Table 3.2.

◆ In sum-of-minterm:

◆ In sum-of-maxterm:

◆ Taking the complement of F

( , , ) (1,3,4,6)F x y z = 

( , , ) (0,2,5,7)F x y z = 

( , , ) ( )( )F x y z x z x z = + +
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3-6 Don't-Care Conditions

 The value of a function is not specified for certain 

combinations of variables

◆ BCD; 1010-1111: don't care

 The don't-care conditions can be utilized in logic 

minimization

◆ Can be implemented as 0 or 1

 Example 3.9: simplify F(w, x, y, z) = (1, 3, 7, 11, 15) which 

has the don't-care conditions d(w, x, y, z) = (0, 2, 5).



Example 3.9 (cont.)

◆ F = yz + w'x'; F = yz + w'z

◆ F = (1, 3, 7, 11, 15) ; F = d (1, 3, 5, 7, 11, 15)

◆ Either expression is acceptable

Figure 3.17 Example with don't-care Conditions



3-7 NAND and NOR 
Implementation

 NAND gate is a universal gate

◆ Can implement any digital system

Figure 3.18 Logic Operations with NAND Gates



NAND Gate

 Two graphic symbols for a NAND gate

Figure 3.19 Two Graphic Symbols for NAND Gate



Example 3.10

 Example 3-10: implement F(x, y, z) = 

( , , ) (1,2,3,4,5,7)F x y z =  ( , , )F x y z xy x y z = + +

Figure 3.21 Solution to Example 3-10



Multilevel NAND Circuits

 Boolean function implementation

◆ AND-OR logic → NAND-NAND logic

» AND → AND + inverter

» OR: inverter + OR = NAND

» For every bubble that is not compensated by another 

small circle along the same line, insert an inverter.

Figure 3.22 Implementing F = A(CD + B) + BC



NAND Implementation

Figure 3.23 Implementing F = (AB +AB)(C+ D)



NOR Implementation

 NOR function is the dual of NAND function.

 The NOR gate is also universal.

Figure 3.24 Logic Operation with NOR Gates



Two Graphic Symbols for a NOR 
Gate

Example: F = (A + B)(C + D)E

Figure 3.26 Implementing F = (A + B)(C + D)E

Figure 3.25 Two Graphic Symbols for NOR Gate



Example

Example: F = (AB +AB)(C + D) 

Figure 3.27 Implementing F = (AB +AB)(C + D) with NOR gates



3-8 Other Two-level 
Implementations (

 Wired logic
◆ A wire connection between the outputs of two gates

◆ Open-collector TTL NAND gates: wired-AND logic

◆ The NOR output of ECL gates: wired-OR logic

( ) ( ) ( ) ( )( )

( ) ( ) [( )( )]

F AB CD AB CD A B C D

F A B C D A B C D

      =  = + = + +

  = + + + = + +

AND-OR-INVERT function

OR-AND-INVERT function

Figure 3.28 Wired Logic



AND-OR-Invert Implementation

 AND-OR-INVERT (AOI) Implementation

◆ NAND-AND = AND-NOR = AOI

◆ F = (AB+CD+E)' 

◆ F' = AB+CD+E   (sum of products)

Figure 3.29 AND-OR-INVERT circuits, F = (AB +CD +E) 



OR-AND-Invert Implementation

 OR-AND-INVERT (OAI) Implementation

◆ OR-NAND = NOR-OR = OAI

◆ F = ((A+B)(C+D)E)'

◆ F' = (A+B)(C+D)E   (product of sums)

Figure 3.30 OR-AND-INVERT circuits, F = ((A+B)(C+D)E)'



Figure 3.31 Other Two-level Implementations



Exclusive-OR Implementations

 Implementations

◆ (x'+y')x + (x'+y')y = xy'+x'y = xy

Figure 3.32 Exclusive-OR Implementations



Odd Function

◆ ABC = (AB'+A'B)C' +(AB+A'B')C = AB'C'+A'BC'+ABC+A'B'C 

= (1, 2, 4, 7)

◆ XOR is a odd function → an odd number of 1's, then F = 1.

◆ XNOR is a even function → an even number of 1's, then F = 1.

Figure 3.33 Map for a Three-variable Exclusive-OR Function



XOR and XNOR

 Logic diagram of odd and even functions

Figure 3.34 Logic Diagram of Odd and Even Functions



Parity Generation and Checking



Parity Generation and Checking



Combinational Circuits

 Output is function of input only

i.e. no feedback

When input changes, output may change (after a delay)

180 / 
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•
•
•

•
•
•

n inputs m outputs
Combinational

Circuits





Combinational Circuits

 Analysis

◆ Given a circuit, find out its function

◆ Function may be expressed as:

» Boolean function

» Truth table

 Design

◆ Given a desired function, determine its circuit

◆ Function may be expressed as:

» Boolean function

» Truth table
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B
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Analysis Procedure

 Boolean Expression Approach
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C

B
A

C

B
A

B
A

C
A

C
B

F1

F2

T2=ABC

T1=A+B+C

F2=AB+AC+BC

F’2=(A’+B’)(A’+C’)(B’+C’)

T3=AB'C'+A'BC'+A'B'C

F1=AB'C'+A'BC'+A'B'C+ABC

F2=AB+AC+BC



C

B
A

C

B
A

B
A

C
A

C
B

F1

F2

Analysis Procedure

 Truth Table Approach
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= 1 

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

1

1

1

1

1

1

0

0

1

A  B  C F1 F2

0   0   0 0 0

0   0   1 1 0

0   1   0 1 0

0   1   1 0 1

1   0   0 1 0

1   0   1 0 1

1   1   0 0 1

1   1   1 1 1

B

0 1 0 1

A 1 0 1 0

C

B

0 0 1 0

A 0 1 1 1

C

F1=AB'C'+A'BC'+A'B'C+ABC F2=AB+AC+BC



Design Procedure

 Given a problem statement:

◆ Determine the number of inputs and outputs

◆ Derive the truth table

◆ Simplify the Boolean expression for each output

◆ Produce the required circuit

Example:

    Design a circuit to convert a “BCD” code to “Excess 3” code

184 / 

65

➢ 4-bits

➢ 0-9 values

➢ 4-bits

➢ Value+3
?
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Design Procedure

 BCD-to-Excess 3 Converter
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A  B  C  D w  x  y  z

0  0  0  0 0  0  1  1

0  0  0  1 0  1  0  0

0  0  1  0 0  1  0  1

0  0  1  1 0  1  1  0

0  1  0  0 0  1  1  1

0  1  0  1 1  0  0  0

0  1  1  0 1  0  0  1

0  1  1  1 1  0  1  0

1  0  0  0 1  0  1  1

1  0  0  1 1  1  0  0

1  0  1  0 x  x  x  x

1  0  1  1 x  x  x  x

1  1  0  0 x  x  x  x

1  1  0  1 x  x  x  x

1  1  1  0 x  x  x  x

1  1  1  1 x  x  x  x

C

1 1 1
B

A
x x x x

1 1 x x

D

C

1 1 1

1
B

A
x x x x

1 x x

D

C

1 1

1 1
B

A
x x x x

1 x x

D

C

1 1

1 1
B

A
x x x x

1 x x

D

w = A+BC+BD x = B’C+B’D+BC’D’

y = C’D’+CD z = D’



Design Procedure

 BCD-to-Excess 3 Converter
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A  B  C  D w  x  y  z

0  0  0  0 0  0  1  1

0  0  0  1 0  1  0  0

0  0  1  0 0  1  0  1

0  0  1  1 0  1  1  0

0  1  0  0 0  1  1  1

0  1  0  1 1  0  0  0

0  1  1  0 1  0  0  1

0  1  1  1 1  0  1  0

1  0  0  0 1  0  1  1

1  0  0  1 1  1  0  0

1  0  1  0 x  x  x  x

1  0  1  1 x  x  x  x

1  1  0  0 x  x  x  x

1  1  0  1 x  x  x  x

1  1  1  0 x  x  x  x

1  1  1  1 x  x  x  x

w

x

D

C

z

y

B

A

w = A + B(C+D)

x = B’(C+D) + B(C+D)’

y = (C+D)’ + CD

z = D’



Seven-Segment Decoder
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a

b

c

g

e

d

f

?

w

x

y

z

a
b
c
d
e
f
g

w  x  y  z a b c d e f g

0  0  0  0 1 1 1 1 1 1 0

0  0  0  1 0 1 1 0 0 0 0

0  0  1  0 1 1 0 1 1 0 1

0  0  1  1 1 1 1 1 0 0 1

0  1  0  0 0 1 1 0 0 1 1

0  1  0  1 1 0 1 1 0 1 1

0  1  1  0 1 0 1 1 1 1 1

0  1  1  1 1 1 1 0 0 0 0

1  0  0  0 1 1 1 1 1 1 1

1  0  0  1 1 1 1 1 0 1 1

1  0  1  0 x x x x x x x

1  0  1  1 x x x x x x x

1  1  0  0 x x x x x x x

1  1  0  1 x x x x x x x

1  1  1  0 x x x x x x x

1  1  1  1 x x x x x x x

y

1 1 1

1 1 1
x

w
x x x x

1 1 x x

z

BCD code

a = w + y + xz + x’z’ b = . . .
c = . . .

d = . . .
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Binary Adder

 Half Adder

◆ Adds 1-bit plus 1-bit

◆ Produces Sum and Carry
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65
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x
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───
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y
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C



Binary Adder

 Full Adder

◆ Adds 1-bit plus 1-bit plus 1-bit

◆ Produces Sum and Carry
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x  y  z C   S
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0  1  1 1   0

1  0  0 0   1

1  0  1 1   0

1  1  0 1   0

1  1  1 1   1
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+    y
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───

C S

FA
x
y
z

S

C

y

0 1 0 1

x 1 0 1 0

z

y

0 0 1 0

x 0 1 1 1

z

S = xy'z'+x'yz'+x'y'z+xyz = x  y  z

C = xy + xz + yz



Binary Adder

 Full Adder

192 / 

65

x

y

z

S

C

x
y

x
z

y
z

x
y
z
x
y
z
x
y
z
x
y
z

x
y
z

x

y

z

x
y

x
z

y
z

S

C

S = xy'z'+x'yz'+x'y'z+xyz = x  y  z

C = xy + xz + yz



Binary Adder

 Full Adder
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Binary Adder
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c3  c2  c1 .

+  x3  x2  x1  x0

+  y3  y2  y1  y0

────────

Cy   S3  S2  S1  S0

FA

x3                     x2                    x1                     x0

FAFAFA

y3                     y2                    y1                     y0

S3                     S2                    S1                     S0

C4                   C3                    C2                   C1

0

Binary Adder

x3x2x1x0        y3y2y1y0

S3S2S1S0

C0Cy
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Binary Adder

 Carry Propagate Adder
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CPA

A3 A2 A1 A0 B3 B2 B1 B0

S3 S2 S1 S0

C0CyCPA

A3 A2 A1 A0 B3 B2 B1 B0

S3 S2 S1 S0

C0Cy

x3  x2  x1  x0
y3  y2  y1  y0

x7  x6  x5  x4
y7  y6  y5  y4

S3  S2  S1  S0S7  S6  S5  S4

0



 Carry propagation

◆ When the correct outputs are available

◆ The critical path counts (the worst case)

◆ (A1, B1, C1) → C2 → C3 → C4 → (C5, S4)

◆ When 4-bits full-adder → 8 gate levels (n-bits: 2n gate levels)

Figure 4.10 Full Adder with P and G Shown



Binary Subtractor

 Use 2’s complement with binary adder

◆ x – y = x + (-y) = x + y’ + 1
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Binary Adder

  A3 A2 A1 A0     B3    B2    B1    B0

S3 S2 S1 S0

CiCy 1

x3  x2  x1 x0     y3    y2     y1     y0

F3 F2 F1 F0



Binary Adder/Subtractor

 M: Control Signal (Mode)

◆ M=0 ➔ F = x + y

◆ M=1 ➔ F = x – y
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Binary Adder

  A3 A2 A1 A0     B3    B2    B1    B0

S3 S2 S1 S0

CiCy

Mx3 x2  x1 x0     y3    y2     y1     y0

F3 F2 F1 F0



Overflow

 Unsigned Binary Numbers

 2’s Complement Numbers
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FAFAFA

y3                      y2                     y1                      y0

S3                     S2                    S1                     S0
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0

Overflow



Decoders

 Extract “Information” from the code

 Binary Decoder

◆ Example: 2-bit Binary Number

200 / 

65

Binary

Decoder

x1

x0

Only one

lamp will 

turn on

0

0

1

0

0

0

10 2 3



Decoders

 2-to-4 Line Decoder
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Decoders

 3-to-8 Line Decoder
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Decoders

 “Enable” Control
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Decoders

 Expansion
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Decoders

 Active-High / Active-Low
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Implementation Using Decoders

 Each output is a minterm

 All minterms are produced

 Sum the required minterms

Example: Full Adder

S(x, y, z) = ∑(1, 2, 4, 7)

C(x, y, z) = ∑(3, 5, 6, 7)

206 / 
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Implementation Using Decoders
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Encoders

 Put “Information” into code

 Binary Encoder

◆ Example: 4-to-2 Binary Encoder

208 / 

65

x3  x2  x1 y1  y0
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0   0   1 0   1
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Binary

Encoder
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at a time



Encoders

 Octal-to-Binary Encoder (8-to-3)
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Priority Encoders

 4-Input Priority Encoder
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Encoder / Decoder Pairs
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Multiplexers

213 / 
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Multiplexers

 2-to-1 MUX

 4-to-1 MUX
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Multiplexers

 Quad 2-to-1 MUX
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Multiplexers

 Quad 2-to-1 MUX
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Implementation Using Multiplexers

 Example

F(x, y) = ∑(0, 1, 3)
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Implementation Using Multiplexers

 Example

F(x, y, z) = ∑(1, 2, 6, 7)
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Implementation Using Multiplexers

 Example

F(x, y, z) = ∑(1, 2, 6, 7)
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MUX Y

I0

I1

I2

I3 

I4

I5

I6

I7
S2 S1 S0

Implementation Using Multiplexers

 Example

F(A, B, C, D) = ∑(1, 3, 4, 11, 12, 13, 14, 15)
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Y

I0

I1

I2

I3 

I4
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I6

I7

S2 S1 S0

Multiplexer Expansion

 8-to-1 MUX using Dual 4-to-1 MUX
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DeMultiplexers
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Multiplexer / DeMultiplexer Pairs
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DeMultiplexers / Decoders
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Three-State Gates

 Tri-State Buffer

 Tri-State Inverter
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Three-State Gates
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Three-State Gates
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Sequential Circuits

 Asynchronous

 Synchronous

229

Combinational

Circuit
Memory

Elements

Inputs Outputs

Combinational

Circuit

Flip-flops

Inputs Outputs

Clock

A synchronous circuit is a digital circuit in 

which the parts are synchronized by a clock 

signal.

http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Clock_signal


Latches

 SR Latch

230

R

S

Q

Q

S  R Q

0  0 Q0

0  1 0

1  0 1

1  1 Q=Q’=0

No change

Reset

Set

Invalid

S

R

Q

Q

S  R Q

0  0 Q=Q’=1

0  1 1

1  0 0

1  1 Q0

Invalid

Set

Reset

No change



Latches

 SR Latch
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Controlled Latches

 SR Latch with Control Input

232
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Controlled Latches

 D Latch (D = Data)

233
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Controlled Latches

 D Latch (D = Data)

234
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Flip-Flops

 Controlled latches are level-triggered

 Flip-Flops are edge-triggered

235

C

CLK Positive Edge

CLK Negative Edge



Flip-Flops

 Master-Slave D Flip-Flop

236

D Latch

(Master)

D

C

Q
D Latch

(Slave)

D

C

Q QD

CLK
CLK

D

QMaster

QSlave

Looks like it is negative 

edge-triggered

Master Slave



Flip-Flops

 Edge-Triggered D Flip-Flop
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Flip-Flops

 JK Flip-Flop
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Flip-Flops

 T Flip-Flop
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Flip-Flop Characteristic Tables

240
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Flip-Flop Characteristic Equations
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Flip-Flop Characteristic Equations

 Analysis / Derivation

242
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Flip-Flop Characteristic Equations

 Analysis / Derivation

243
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Analysis of Clocked Sequential Circuits

 State Equations

245

D Q

Q
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= A x + B x

B(t+1) = DB

= A’(t) x(t)

= A’ x

   y(t) = [A(t)+ B(t)] x’(t)

= (A + B) x’



Analysis of Clocked Sequential Circuits

 State Table (Transition Table)

246

D Q

Q

CLK

D Q

Q

A

B

y

x

A(t+1) = A x + B x

B(t+1) = A’ x

   y(t) = (A + B) x’

Present 

State
Input

Next 

State
Output

A B x A B y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

t+1 tt

0     0 0

0     1 0

0     0 1

1     1 0

0     0 1

1     0 0

0     0 1

1     0 0



Analysis of Clocked Sequential Circuits

 State Table (Transition Table)

247

D Q

Q

CLK

D Q

Q

A

B

y

x

A(t+1) = A x + B x

B(t+1) = A’ x

   y(t) = (A + B) x’

Present 

State

Next State Output

x = 0 x = 1 x = 0 x = 1

A B A B A B y y

0 0 0 0 0 1 0 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 1 0

1 1 0 0 1 0 1 0

t+1 tt



Analysis of Clocked Sequential 
Circuits

 State Diagram
Present 

State

Next State Output

x = 0 x = 1 x = 0 x = 1

A B A B A B y y

0 0 0 0 0 1 0 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 1 0

1 1 0 0 1 0 1 0

248

D Q

Q

CLK

D Q

Q

A

B

y

x

0 0 1 0

0 1 1 1

0/0

0/1

1/0

1/0

1/0

1/0 0/1

0/1

AB input/output



Analysis of Clocked Sequential Circuits

 D Flip-Flops

Example:

249

D Q

Q

x

CLK

y
A

Present 

State
Input

Next 

State

A x y A

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

1

0

1

0

0

1

0 100,11 00,11

01,10

01,10

A(t+1) = DA = A  x  y



Analysis of Clocked Sequential Circuits

 JK Flip-Flops

Example:

250

J Q

QK

CLK

J Q

QK

x

A

B

JA = B  KA = B x’

JB = x’  KB = A  x

A(t+1) = JA Q’A + K’A QA

= A’B + AB’ + Ax

B(t+1) = JB Q’B + K’B QB

= B’x’ + ABx + A’Bx’

Present 

State
I/P

Next 

State

Flip-Flop

Inputs

A B x A B JA KA JB KB

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0     0     1     0

0     0     0     1

1     1     1     0

1     0     0     1

0     0     1     1

0     0     0     0

1     1     1     1

1     0     0     0

0     1

0     0

1     1

1     0

1     1

1     0

0     0

1     1



Analysis of Clocked Sequential Circuits

 JK Flip-Flops

Example:

251

J Q

QK

CLK

J Q

QK

x

A

BPresent 

State
I/P

Next 

State

Flip-Flop

Inputs

A B x A B JA KA JB KB

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0     0     1     0

0     0     0     1

1     1     1     0

1     0     0     1

0     0     1     1

0     0     0     0

1     1     1     1

1     0     0     0

0     1

0     0

1     1

1     0

1     1

1     0

0     0

1     1

0 0 1 1

0 1 1 0

1 0 1

0

1

0
0

1



Analysis of Clocked Sequential Circuits

 T Flip-Flops

Example:

252

TA = B x TB = x

y = A B

A(t+1) = TA Q’A + T’A QA

= AB’ + Ax’ + A’Bx

B(t+1) = TB Q’B + T’B QB

= x  B

A

B

T Q

QR

T Q

QR

CLK Reset

x
y

Present 

State
I/P

Next 

State

F.F

Inputs
O/P

A B x A B TA TB y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0     0

0     1

0     0

1     1

0     0

0     1

0     0

1     1

0     0

0     1

0     1

1     0

1     0

1     1

1     1

0     0

0

0

0

0

0

0

1

1



Analysis of Clocked Sequential Circuits

 T Flip-Flops

Example:

253

A

B

T Q

QR

T Q

QR

CLK Reset

x
y

Present 

State
I/P

Next 

State

F.F

Inputs
O/P

A B x A B TA TB y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0     0

0     1

0     0

1     1

0     0

0     1

0     0

1     1

0     0

0     1

0     1

1     0

1     0

1     1

1     1

0     0

0

0

0

0

0

0

1

1

0 0 0 1

1 1 1 0

0/0

1/0

0/0

1/0

1/0

1/1

0/00/1



Mealy and Moore Models

 The Mealy model: the outputs are functions of both the present 

state and inputs (Fig. 5-15).

◆ The outputs may change if the inputs change during the clock pulse 

period.

» The outputs may have momentary false values unless the 

inputs are synchronized with the clocks.

 The Moore model: the outputs are functions of the present state 

only (Fig. 5-20).

◆ The outputs are synchronous with the clocks.



Mealy and Moore Models

Fig. 5.21 Block diagram of Mealy and Moore state machine



Mealy and Moore Models

256

Present 

State
I/P

Next 

State
O/P

A B x A B y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 1 0 0

Mealy

For the same state,

the output changes with the input

Present 

State
I/P

Next 

State
O/P

A B x A B y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 1 0

0 1 1 1 0 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 1

Moore

For the same state,

the output does not change with the input



Moore State Diagram

257

State / Output

0 0 / 0 0 1 / 0

1 1 / 1 1 0 / 0

0

1

1

1

00

0

1



State Reduction and Assignment

 State Reduction Reductions on 

the number of flip-flops and 

the number of gates.

◆ A reduction in the number of 

states may result in a reduction in 

the number of flip-flops.

◆ An example state diagram 

showing in Fig. 5.25.

Fig. 5.25 State diagram



State Reduction

◆ Only the input-output sequences 

are important.

◆ Two circuits are equivalent

» Have identical outputs 

for all input sequences;

» The number of states is 

not important.

Fig. 5.25 State diagram

State: a a b c d e f f g f g a

Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 0 1 1 0 1 0 0



 Equivalent states

◆ Two states are said to be equivalent

» For each member of the set of inputs, they give exactly 

the same output and send the circuit to the same state or 

to an equivalent state.

» One of them can be removed.



 Reducing the state table

◆ e = g (remove g);

◆ d = f (remove f);



◆ The reduced finite state machine

State: a a b c d e d d e d e a

Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 0 1 1 0 1 0 0



◆ The checking of each pair of 

states for possible 

equivalence can be done 

systematically using 

Implication Table.

◆ The unused states are treated 

as don't-care condition  

fewer combinational gates.

Fig. 5.26   Reduced State diagram



State Assignment

 State Assignment 

 To minimize the cost of the combinational circuits.

◆ Three possible binary state assignments. (m states need n-bits, where 2n 

> m)



◆ Any binary number assignment is satisfactory as long as each state is 

assigned a unique number.

◆ Use binary assignment 1.
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Design Procedure 

 Design Procedure for sequential circuit

◆ The word description of the circuit behavior to get a state diagram; 

◆ State reduction if necessary; 

◆ Assign binary values to the states; 

◆ Obtain the binary-coded state table; 

◆ Choose the type of flip-flops; 

◆ Derive the simplified flip-flop input equations and output equations; 

◆ Draw the logic diagram; 



Design of Clocked Sequential Circuits

 Example:

Detect 3 or more consecutive 1’s

268

S0 / 0 S1 / 0

S3 / 1 S2 / 0

0

1

1

0
0

1

0

1

State A  B

S0 0  0

S1 0  1

S2 1  0

S3 1  1



Design of Clocked Sequential Circuits

 Example:

Detect 3 or more consecutive 1’s

269

Present 

State
Input

Next 

State
Output

A B x A B y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0     0 0

0     1 0

0     0 0

1     0 0

0     0 0

1     1 0

0     0 1

1     1 1

S0 / 0 S1 / 0

S3 / 1 S2 / 0

0

1

1

0
0

1

0

1



Design of Clocked Sequential Circuits

 Example:

Detect 3 or more consecutive 1’s

270

Present 

State
Input

Next 

State
Output

A B x A B y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0     0 0

0     1 0

0     0 0

1     0 0

0     0 0

1     1 0

0     0 1

1     1 1

A(t+1) = DA (A, B, x)

            = ∑ (3, 5, 7)

B(t+1) = DB (A, B, x)

            = ∑ (1, 5, 7)

y (A, B, x) = ∑ (6, 7)

Synthesis using D Flip-Flops



Design of Clocked Sequential Circuits 
with D F.F.

 Example:

Detect 3 or more consecutive 1’s

271

DA (A, B, x) = ∑ (3, 5, 7)

= A x + B x

DB (A, B, x) = ∑ (1, 5, 7)

= A x + B’ x

y (A, B, x) = ∑ (6, 7)

= A B

Synthesis using D Flip-Flops

B

0 0 1 0

A 0 1 1 0

x B

0 1 0 0

A 0 1 1 0

x
B

0 0 0 0

A 0 0 1 1

x



Design of Clocked Sequential Circuits 
with D F.F.

 Example:

Detect 3 or more consecutive 1’s

272

DA = A x + B x

DB = A x + B’ x

y = A B

Synthesis using D Flip-Flops

D Q

Q

A

CLK

x

BD Q

Q

y



Flip-Flop Excitation Tables

273

Present 

State

Next 

State

F.F.

Input

Q(t) Q(t+1) D

0 0

0 1

1 0

1 1

Present 

State

Next 

State

F.F.

Input

Q(t) Q(t+1) J K

0 0

0 1

1 0

1 1

0 0 (No change)

0 1 (Reset)
0   x

1   x

x   1

x   0

0

1

0

1

1 0 (Set)

1 1 (Toggle)

0 1 (Reset)

1 1 (Toggle)

0 0 (No change)

1 0 (Set)

Q(t) Q(t+1) T

0 0

0 1

1 0

1 1

0

1

1

0
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Design of Clocked Sequential Circuits 
with JK F.F.

 Example:

Detect 3 or more consecutive 1’s

275

Present 

State
Input

Next 

State

Flip-Flop

Inputs

A B x A B JA KA JB KB

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

0     x

0     x

0     x

1     x

x     1

x     0

x     1

x     0

JA (A, B, x)  = ∑ (3)

dJA (A, B, x) = ∑ (4,5,6,7)

KA (A, B, x)  = ∑ (4, 6)

dKA (A, B, x) = ∑ (0,1,2,3)

JB (A, B, x)  = ∑ (1, 5)

dJB (A, B, x) = ∑ (2,3,6,7)

KB (A, B, x)  = ∑ (2, 3, 6)

dKB (A, B, x) = ∑ (0,1,4,5)

Synthesis using JK F.F.

0     x

1     x

x     1

x     1

0     x

1     x

x     1

x     0



Design of Clocked Sequential Circuits 
with JK F.F.

 Example:

Detect 3 or more consecutive 1’s

276

JA = B x KA = x’

JB = x  KB = A’ + x’

Synthesis using JK Flip-Flops

B

0 0 1 0

A x x x x

x

B

x x x x

A 1 0 0 1

x

B

0 1 x x

A 0 1 x x

x

B

x x 1 1

A x x 0 1

x

CLK

J Q

QK

x

A

B

J Q

QK y



Design of Clocked Sequential Circuits 
with T F.F.

 Example:

Detect 3 or more consecutive 1’s

277

Present 

State
Input

Next 

State

F.F.

Input

A B x A B TA  TB

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

0

0

0

1

1

0

1

0

Synthesis using T Flip-Flops

0

1

1

1

0

1

1

0

TA (A, B, x)  = ∑ (3, 4, 6)

TB (A, B, x)  = ∑ (1, 2, 3, 5, 6)



Design of Clocked Sequential Circuits 
with T F.F.

 Example:

Detect 3 or more consecutive 1’s

278

TA = A x’ + A’ B x

TB = A’ B + B  x

Synthesis using T Flip-Flops

B

0 0 1 0

A 1 0 0 1

x

B

0 1 1 1

A 0 1 0 1

x

A

B

y

T Q

Q

x

CLK

T Q

Q



Design of Counters

279

Count sequence Flip-Flop inputs

A2   A1   A0
TA2 TA1    TA0

0     0      0

0     0      1

0     1      0

0     1      1

1     0      0

1     0      1

1     1      0

1     1      1

TA2 = A1 A0             TA1 = A0

TA0 = 1

Synthesis using T Flip-Flops

x

Count Pulse

A0

T Q

Q

T Q

Q

T Q

Q

A1

A2

1

0     0 1

0     1        1

0     0        1

1     1        1

0     0        1

0     1        1

0     0        1

1     1        1



Design of Counters

280

Count sequence Flip-Flop inputs

A     B     C JA  KA  JB  KB  JC KC

0     0      0 0    X    0   X   1   X

0     0      1 0    X    1   X   X   1

0     1      0 1    X    X  1    0   X

1     0      0 X   0     0   X   1   X

1     0      1 X   0     1   X  X    1

1     1      0 X   1    X   1    0   X

JA = B     KA = B

JB = C     KB = 1

JC = B/     KC = 1

Synthesis using JK Flip-Flops

x



Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV 281
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