
Noor Md Shahriar

Senior Lecturer, Deputy Head of Dept.

Dept. of Electrical & Electronic Engineering

University of Global Village, (UGV), Barishal

Contact: 01743-500587

E-mail: noor.shahriar1@gmail.com
‘Imagination is more important than knowledge’

-AlbertEinstein

Digital Electronics (EEE

0714-2101)

Digital Logic Design (CSE

0611-1201)

University of Global Village (UGV), Barishal

Dept. of Electrical and Electronic Engineering (EEE)

1

mailto:noor.shahriar1@gmail.com

Basic Course Information

Course Title
Digital Electronics/

Digital Logic Design

Course Code EEE- 0714-3107

Credits 03

CIE Marks 90

SEE Marks 60

Exam Hours

2 hours (Mid Exam)

3 hours (Semester
Final Exam)

Level 4th Semester

Academic
Session

Summer 2025

2

Digital Electronics (EEE-0714-2109)

3

3 Credit Course

Class: 17 weeks (2 classes per week)

Total Class Duration: 1 hrs.

Total=34 Hours

Preparation Leave (PL): 02 weeks

Exam: 04 weeks

Results: 02 weeks

Total: 25 Weeks

Attendance:

Students with more than or equal to 70% attendance in this course

will be eligible to sit for the Semester End Examination (SEE). SEE

is mandatory for all students.

Continuous Assessment
Strategy

4

Quizzes

Assignment

Presentation

Altogether 4 quizzes may be taken

during the semester, 2 quizzes will be

taken for midterm and 2 quizzes will

be taken for final term.

Altogether 2 assignments may be

taken during the semester, 1

assignments will be taken for

midterm and 1 assignments will be

taken for final term.

The students will have to form a

group of maximum 3 members. The

topic of the presentation will be

given to each group and students

will have to do the group

presentation on the given topic.

CIE- Continuous Internal Evaluation (90 Marks) SEE- Semester End

Examination (60 Marks)

Bloom’s

Category

Tests

Remember 10

Understand 10

Apply 10

Analyze 10

Evaluate 10

Create 10

Bloom’s

Category

Marks

(out of 90)

Tests
(45)

Quizzes
(15)

External
Participation in
Curricular/Co-

Curricular
Activities (15)

Remember 08 08 Bloom’s Affective
Domain:
(Attitude or will)
Attendance: 15
Copy or attempt to
copy: −10 Late
Assignment: -10

Understand 08 07

Apply 08

Analyze 08

Evaluate 08

Create 05

ASSESSMENT PATTERN

Course Learning Outcome (CLO)

Serial No. Course Learning Outcome (CLO)

CLO-1 Understand and recall the process of
minimization through K-mapping and tabular
method.

CLO-2 Analyze and construct combinational circuits
and sequential circuits using Logic Gates.

CLO-3 Explain and Examine memory elements using
circuits.

CLO-4 Construct combinational and sequential
circuits through VHDL by understanding
dataflow, behavioral and structural modeling,
synthesis and simulation of both circuits.

6

SYNOPSIS / RATIONALE

 The Digital Electronics course provides EEE students with

fundamental knowledge of digital systems, covering topics like

Boolean algebra, logic gates, combinational and sequential

circuits, and flip-flops. It equips students with the skills to

analyze, design, and optimize digital circuits, which are essential

in modern computing, communication systems, automation, and

embedded technologies. By bridging theoretical concepts with

practical applications, the course prepares students for advanced

studies in microprocessors, VLSI, and digital signal processing,

ensuring they are ready to tackle industry challenges and innovate

in emerging technologies.

7

Course objectives

 To introduce the fundamental concepts of digital logic and

Boolean algebra.

 To enable students to analyze and design combinational circuits

using logic gates.

 To provide an understanding of sequential circuits, flip-flops, and

their applications.

 To develop the ability to implement and troubleshoot digital

circuits in practical scenarios.

 To prepare students for advanced topics like microprocessors,

VLSI, and digital signal processing.

 To enhance problem-solving skills for designing optimized

digital systems used in modern electronics and communication

technologies.
8

Digital Logic Design Lectures: 3 hours/week

Digital Electronics Credits: 3

Seria
l No.

Content of Course
Hour
s

CLOs

1

Analysis and Synthesis of Digital Logic Circuits:
Number system, codes, and conversion. Boolean algebra,
De Morgan’s law, logic gates and truth tables,
combinational logic design, minimization techniques,
implementation of basic static logic gates in CMOS and
BiCMOS.

9
CLO-1,
CLO-2

2
Arithmetic and data handling logic circuits, decoders and
encoders, multiplexers and combinational circuit design.

8
CLO-2,
CLO-3

3
Programmable Logic Devices: Logic arrays, Field
Programmable Logic Arrays, and Programmable Read
Only Memory.

8
CLO-3,
CLO-4

4
Sequential Circuits: Different types of latches, flip-flops
and their design using ASM approach, timing analysis,
and power optimization of sequential circuits.

9
CLO-3,
CLO-4

5
Modular sequential logic circuit design: Shift registers,
counters and their applications.

8 CLO-4

Week Content of Course
ASG/
Quiz/
Pr

Teaching-
Learning
Strategy

Assessment
Strategy

Corres-
ponding
CLOs

1

Introduction to Digital
Electronics, Basic idea about
Analog and Digital signals.
Details about various types of
number systems.

Lecture,
Discussion

Written Exam,
Class
Participation

CLO-1

Converting base of integer and
fractional numbers from one
number system to another.

Lecture, Group
Examples

Classwork,
Problem Solving

CLO-1

2
Data Representation and
Complements.

Quiz-1
Lecture, Visual
Aids, Group
Discussion

Quiz, Written
Exam

CLO-1

3
Addition and Subtraction
operation of Binary, Octal &
Hexadecimal Numbers.

ASG
Lecture,
Practice
Problems

Assignment,
Problem Solving

CLO-2

4

Negative binary number
representation in various methods
and basic idea about
complements. Subtraction of other
number systems using Radix and
Diminished Radix complement.

Lecture, Group
Problem
Solving

Written Exam,
Group
Discussion

CLO-2

Course Schedule
Course plan specifying content, CLOs, teaching learning and assessment strategy mapped with CLOs

10

Course Schedule (Contd.)

5

Introduction to different types
of binary codes. Weighted
codes, Gray code, ASCII code,
and error-detecting code.

Quiz-2

Lecture, Case
Studies,
Problem
Practice

Quiz, Problem-
Solving

CLO-3

6

Definition of Boolean algebra,
Boolean theorems, and De-
Morgan’s theorem.
Simplification using theorems.

Assign
ment

Lecture,
Hands-on
Examples,
Practical Work

Assignment,
Oral
Presentation

CLO-3

7
Simplification of Boolean
Algebra, Properties & K-Map
Method

Lecture, Board
Work,
Practical
Examples

Problem
Solving,
Classwork

CLO-4

8

Binary Logic, AND, OR, NOT,
NAND, NOR, X-OR, and X-
NOR gates. Formation of
Boolean algebra using universal
gates

Quiz-3
Lecture, Case
Studies,
Practical Work

Quiz, Problem
Solving

CLO-3

9
Gate Level Minimization,
Boolean Functions, Truth Table,
Canonical Forms

Lecture,
Group
Activities,
Hands-on
Examples

Written Exam,
Practical Tasks

CLO-

11

Course Schedule (Contd.)

Wee
k

Content of Course
ASG
/Qui
z/Pr

Teaching-
Learning
Strategy

Assessment
Strategy

Corres-
pondin
g CLOs

10
Combinational Logic
Analysis, K-Map with Don’t
Care Conditions

Mid-
Term
Exam

Lecture,
Board
Examples,
Group
Practice

Mid-Term Exam CLO-4

11
BCD to excess 3 and Seven
Segment Decoder

Lecture,
Problem-
Solving
Activities

Written Exam,
Problem Solving

CLO-5

12
Half adder, full adder, and
subtractor design, encode,
decoder

ASG

Lecture,
Visual Aids,
Practical
Examples

Assignment, Oral
Presentation

CLO-5

13
Design of Muxtiplexer ,
demultiplexer

Lecture,
Group
Examples,
Case Studies

Written Exam,
Group Problem
Solving

CLO-5

12

Course Schedule (Contd.)

14

SR, D, JK and T flipflops
,Master-Slave flip-flop and
Edge Triggered circuits.
Conversion of Flip-flops.

Lecture,
Practical
Examples,
Group
Discussion

Problem Solving,
Assignment

CLO-5

15
State Table, State Diagram,
Mealy and Moore machines.

Quiz-
4

Lecture, Case
Studies,
Group
Problem
Solving

Quiz, Written
Exam

CLO-5

16

Counters: Asynchronous and
Synchronous Counters,
Up/Down Counters.

Lecture,
Practical
Examples,
Visual Aids

Assignment,
Written Exam

CLO-6

17

Ring Counter, Johnson
Counter, Design of
Sequential Circuits.

Lecture,
Group
Activities,
Hands-on
Examples

Problem Solving,
Practical Tasks

CLO-6

13

REFERENCE BOOK

14

Video Lecture Playlist

https://youtube.com/playlist?list=PLbfLO9aEfT5f

pYgbTlQKxo4jiwbEADayG&si=1ay1sarJsBxnPn

qV

Digital Design 6th

Edition By Morris
Mano

Digital Logic Design
10th Edition By Tocci

Week-1

15

Slide (16-35)

Basic Definition

16

 Digital Logic Design is the study and

implementation of electronic circuits that process information

using binary digits (0 and 1), known as digital signals.

It involves:

•Designing circuits using logic gates (AND, OR, NOT, etc.).

•Understanding Boolean algebra.

•Constructing systems like adders, multiplexers, counters,

memory units, and finite state machines.

Why study this subject?

Skill / Knowledge Enabled By Digital Logic

System-level
understanding

Learn how code runs on
hardware

Problem-solving and
design

Logic circuit design mirrors
algorithm development

Embedded & IoT
development

Essential for microcontroller
interfacing

Hardware programming
Verilog/FPGA, VLSI, HDL-
based design

Secure system design
Digital lock, authentication,
cryptographic hardware

Performance optimization
Custom logic for acceleration
(e.g., ML chips, DSP blocks) 17

Applications of Digital Electronics / Logic Design

 Consumer Electronics

◆ Digital watches and clocks

◆ Washing machines, microwave ovens, remote controls

◆ Smart TVs, audio systems

 Computers and Embedded Systems

◆ CPU and GPU architecture

◆ Memory (RAM/ROM) management

◆ Instruction decoders and control units

 Communication Systems

◆ Modulation/demodulation logic (e.g., QAM, FSK)

◆ Error detection and correction circuits (parity, Hamming code)

◆ Multiplexers in channel selection

18

Applications of Digital Electronics / Logic Design

 Automotive Systems

◆ Engine control units (ECUs)

◆ Parking sensors and collision avoidance systems

◆ Digital dashboards and infotainment units

 Medical Devices

◆ Digital thermometers and ECG machines

◆ Patient monitoring systems

◆ Diagnostic imaging control circuits

 Industrial Automation

◆ Programmable Logic Controllers (PLCs)

◆ Robotic control logic

◆ Conveyor belt and sorting system control

19

Applications of Digital Electronics / Logic Design

 Security Systems

◆ Digital locks and access control

◆ Motion detection and alarm logic

◆ Biometric interface logic (FPGA-based)

 Aerospace and Defense

◆ Flight control systems (redundant FSM-based designs)

◆ Radar signal processing

◆ Secure communication protocols

 Networking and Data Centers

◆ Packet routing and switching logic

◆ Data buffering and FIFO/LIFO logic circuits

◆ Traffic prioritization algorithms (digital logic level)

20

Applications of Digital Electronics / Logic Design

 Signal and Image Processing

◆ Digital filters and convolution logic

◆ Real-time image edge detection

◆ Compression algorithms (DCT, Huffman coding)

 Internet of Things (IoT)

◆ Sensor interfacing and signal conditioning

◆ Power-efficient logic control

◆ Edge computing controllers

 Gaming and Entertainment

◆ Gamepad/button logic

◆ Display controllers (LCD/LED driving logic)

◆ Audio synthesis and timing circuits

21

Outline of Chapter 1

 1.1 Digital Systems

 1.2 Binary Numbers

 1.3 Number-base Conversions

 1.4 Octal and Hexadecimal Numbers

 1.5 Complements

 1.6 Signed Binary Numbers

 1.7 Binary Codes

 1.8 Binary Storage and Registers

 1.9 Binary Logic

22

Analog and Digital Signal

 Analog system

◆ The physical quantities or signals may vary continuously over a specified

range.

 Digital system

◆ The physical quantities or signals can assume only discrete values.

◆ Greater accuracy

t

X(t)

t

X(t)

Analog signal Digital signal 23

Binary Digital Signal

 An information variable represented by physical quantity.

 For digital systems, the variable takes on discrete values.

◆ Two level, or binary values are the most prevalent values.

 Binary values are represented abstractly by:

◆ Digits 0 and 1

◆ Words (symbols) False (F) and True (T)

◆ Words (symbols) Low (L) and High (H)

◆ And words On and Off

 Binary values are represented by values

or ranges of values of physical quantities.

 Why Digital

◆ Digital circuits are inexpensive

◆ Easy to reduce noise

◆ Great flexibility in the design.

t

V(t)

Binary digital signal

Logic 1

Logic 0

undefine

24

Decimal Number System

 Base (also called radix) = 10

◆ 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

 Digit Position

◆ Integer & fraction

 Digit Weight

◆ Weight = (Base)
Position

 Magnitude

◆ Sum of “Digit x Weight”

 Formal Notation

1 0 -12 -2

5 1 2 7 4

10 1 0.1100 0.01

500 10 2 0.7 0.04

d2*B
2
+d1*B

1
+d0*B

0
+d-1*B

-1
+d-2*B

-2

(512.74)10

25

Octal Number System

 Base = 8

◆ 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }

 Weights

◆ Weight = (Base)
Position

 Magnitude

◆ Sum of “Digit x Weight”

 Formal Notation

1 0 -12 -2

8 1 1/864 1/64

5 1 2 7 4

5 *8
2
+1 *8

1
+2 *8

0
+7 *8

-1
+4 *8

-

2

 =(330.9375)10

(512.74)8

26

Binary Number System

 Base = 2

◆ 2 digits { 0, 1 }, called binary digits or “bits”

 Weights

◆ Weight = (Base)
Position

 Magnitude

◆ Sum of “Bit x Weight”

 Formal Notation

 Groups of bits 4 bits = Nibble

 8 bits = Byte

1 0 -12 -2

2 1 1/24 1/4

1 0 1 0 1

1 *2
2
+0 *2

1
+1 *2

0
+0 *2

-1
+1 *2

-

2

 =(5.25)10

(101.01)2

1 0 1 1

1 1 0 0 0 1 0 1
27

Hexadecimal Number System

 Base = 16

◆ 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }

 Weights

◆ Weight = (Base)
Position

 Magnitude

◆ Sum of “Digit x Weight”

 Formal Notation

1 0 -12 -2

16 1 1/16256 1/256

1 E 5 7 A

1 *16
2
+14 *16

1
+5 *16

0
+7 *16

-1
+10 *16

-2

 =(485.4765625)10

(1E5.7A)16

28

The Power of 2

n 2n

0 20=1

1 21=2

2 22=4

3 23=8

4 24=16

5 25=32

6 26=64

7 27=128

n 2n

8 28=256

9 29=512

10 210=1024

11 211=2048

12 212=4096

20 220=1M

30 230=1G

40 240=1T

Mega

Giga

Tera

Kilo

29

Addition

 Decimal Addition

5 5

55+

011

= Ten ≥ Base

➔ Subtract a Base

11 Carry

30

Binary Addition

 Column Addition

1 0 1111

1111 0+

0000 1 11

≥ (2)10

111111

= 61

= 23

= 84

31

Binary Subtraction

 Borrow a “Base” when needed

0 0 1110

1111 0−

0101 1 10

= (10)2

2

2

2 2

1

000

1

= 77

= 23

= 54

32

Binary Multiplication

 Bit by bit

01 1 1 1

01 1 0

00 0 0 0

01 1 1 1

01 1 1 1

0 0 000

0110111 0

x

33

Binary Division

 Bit by bit

11 0 0 0

1- 1 1

10 0 1 0

1- 1 1

1100 0

÷

Q= 1 1

R= 1 1

Quotient value

Reminder

) (1 1

34

Number Base Conversions

Decimal

(Base 10)

Octal

(Base 8)

Binary

(Base 2)

Hexadecimal

(Base 16)

Evaluate
Magnitude

Evaluate
Magnitude

Evaluate
Magnitude 35

Week -2
Page(37-45)

36

Decimal (Integer) to Binary Conversion

 Divide the number by the ‘Base’ (=2)

 Take the remainder (either 0 or 1) as a coefficient

 Take the quotient and repeat the division

Example: (13)10

Quotient Remainder Coefficient

Answer: (13)10 = (a3 a2 a1 a0)2 = (1101)2

MSB LSB

13/ 2 = 6 1 a0 = 1

6 / 2 = 3 0 a1 = 0

3 / 2 = 1 1 a2 = 1
1 / 2 = 0 1 a3 = 1

37

Decimal (Fraction) to Binary Conversion

 Multiply the number by the ‘Base’ (=2)

 Take the integer (either 0 or 1) as a coefficient

 Take the resultant fraction and repeat the division

Example: (0.625)10

Integer Fraction Coefficient

Answer: (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2

MSB LSB

0.625 * 2 = 1 . 25

0.25 * 2 = 0 . 5 a-2 = 0

0.5 * 2 = 1 . 0 a-3 = 1

a-1 = 1

38

Decimal to Octal Conversion

Example: (175)10

Quotient Remainder Coefficient

Answer: (175)10 = (a2 a1 a0)8 = (257)8

175 / 8 = 21 7 a0 = 7

21 / 8 = 2 5 a1 = 5

2 / 8 = 0 2 a2 = 2

Example: (0.3125)10

Integer Fraction Coefficient

Answer: (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8

0.3125 * 8 = 2 . 5

0.5 * 8 = 4 . 0 a-2 = 4

a-1 = 2

39

Binary − Octal Conversion

 8 = 23

 Each group of 3 bits represents an octal

digit

Octal Binary

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Example:

(1 0 1 1 0 . 0 1)2

(2 6 . 2)8

Assume Zeros

Works both ways (Binary to Octal & Octal to Binary)

40

Binary − Hexadecimal Conversion

 16 = 24

 Each group of 4 bits represents a

hexadecimal digit

Hex Binary
0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

A 1 0 1 0

B 1 0 1 1

C 1 1 0 0

D 1 1 0 1

E 1 1 1 0

F 1 1 1 1

Example:

(1 0 1 1 0 . 0 1)2

(1 6 . 4)16

Assume Zeros

Works both ways (Binary to Hex & Hex to Binary)

41

Octal − Hexadecimal Conversion

 Convert to Binary as an intermediate step

Example:

(0 1 0 1 1 0 . 0 1 0)2

(1 6 . 4)16

Assume Zeros

Works both ways (Octal to Hex & Hex to Octal)

(2 6 . 2)8

Assume Zeros

42

Decimal, Binary, Octal and Hexadecimal

Decimal Binary Octal Hex
00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

43

1.5 Complements

 There are two types of complements for each base-r system: the radix complement and

diminished radix complement.

 Diminished Radix Complement - (r-1)’s Complement

◆ Given a number N in base r having n digits, the (r–1)’s complement of N is

defined as:

 (rn –1) – N

 Example for 6-digit decimal numbers:

◆ 9’s complement is (rn – 1)–N = (106–1)–N = 999999–N

◆ 9’s complement of 546700 is 999999–546700 = 453299

 Example for 7-digit binary numbers:

◆ 1’s complement is (rn – 1) – N = (27–1)–N = 1111111–N

◆ 1’s complement of 1011000 is 1111111–1011000 = 0100111

 Observation:

◆ Subtraction from (rn – 1) will never require a borrow

◆ Diminished radix complement can be computed digit-by-digit

◆ For binary: 1 – 0 = 1 and 1 – 1 = 0 44

Complements

 1’s Complement (Diminished Radix Complement)

◆ All ‘0’s become ‘1’s

◆ All ‘1’s become ‘0’s

Example (10110000)2

  (01001111)2

If you add a number and its 1’s complement …

1 0 1 1 0 0 0 0

+ 0 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

45

Week -3
Page(47-56)

46

Complements

 Radix Complement

 Example: Base-10

 Example: Base-2

The r's complement of an n-digit number N in base r is defined as

rn – N for N ≠ 0 and as 0 for N = 0. Comparing with the (r − 1) 's

complement, we note that the r's complement is obtained by adding 1

to the (r − 1) 's complement, since rn – N = [(rn − 1) – N] + 1.

The 10's complement of 012398 is 987602

The 10's complement of 246700 is 753300

The 2's complement of 1101100 is 0010100

The 2's complement of 0110111 is 1001001

47

Complements

 2’s Complement (Radix Complement)

◆ Take 1’s complement then add 1

◆ Toggle all bits to the left of the first ‘1’ from the right

Example:

Number:

1’s Comp.:

0 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 0 0 1 1 1 1

+ 1

OR

1 0 1 1 0 0 0 0

00001010

48

Complements

 Subtraction with Complements

◆ The subtraction of two n-digit unsigned numbers M – N in base r can be

done as follows:

49

Complements

 Example 1.5

◆ Using 10's complement, subtract 72532 – 3250.

 Example 1.6

◆ Using 10's complement, subtract 3250 – 72532.

There is no end carry.

Therefore, the answer is – (10's complement of 30718) = − 69282.
50

Complements

 Example 1.7

◆ Given the two binary numbers X = 1010100 and Y = 1000011, perform the

subtraction (a) X – Y ; and (b) Y − X, by using 2's complement.

There is no end carry.

Therefore, the answer is

Y – X = − (2's complement

of 1101111) = − 0010001.

51

Complements

 Subtraction of unsigned numbers can also be done by means of the (r − 1)'s

complement. Remember that the (r − 1) 's complement is one less then the r's

complement.

 Example 1.8

◆ Repeat Example 1.7, but this time using 1's complement.

There is no end carry,

Therefore, the answer is Y –

X = − (1's complement of

1101110) = − 0010001.

52

1.6 Signed Binary Numbers

To represent negative integers, we need a notation for negative

values.

It is customary to represent the sign with a bit placed in the

leftmost position of the number since binary digits.

The convention is to make the sign bit 0 for positive and 1 for

negative.

Example:

Table 1.3 lists all possible four-bit signed binary numbers in the

three representations.
53

Signed Binary Numbers

54

Signed Binary Numbers

 Arithmetic addition

◆ The addition of two numbers in the signed-magnitude system follows the rules of

ordinary arithmetic. If the signs are the same, we add the two magnitudes and

give the sum the common sign. If the signs are different, we subtract the smaller

magnitude from the larger and give the difference the sign if the larger magnitude.

◆ The addition of two signed binary numbers with negative numbers represented in

signed-2's-complement form is obtained from the addition of the two numbers,

including their sign bits.

◆ A carry out of the sign-bit position is discarded.

 Example:

55

Signed Binary Numbers

 Arithmetic Subtraction

◆ In 2’s-complement form:

 Example:

1. Take the 2’s complement of the subtrahend (including the sign bit)

and add it to the minuend (including sign bit).

2. A carry out of sign-bit position is discarded.

() () () ()

() () () ()

A B A B

A B A B

 − + =  + −

 − − =  + +

(− 6) − (− 13) (11111010 − 11110011)

(11111010 + 00001101)

00000111 (+ 7)

56

Week -4
Page(58-80)

57

1.7 Binary Codes

 BCD Code

◆ A number with k decimal digits will

require 4k bits in BCD.

◆ Decimal 396 is represented in BCD

with 12bits as 0011 1001 0110, with

each group of 4 bits representing one

decimal digit.

◆ A decimal number in BCD is the

same as its equivalent binary number

only when the number is between 0

and 9.

◆ The binary combinations 1010

through 1111 are not used and have

no meaning in BCD.

58

Binary Code

 Example:

◆ Consider decimal 185 and its corresponding value in BCD and binary:

 BCD addition

59

Binary Code

 Example:

◆ Consider the addition of 184 + 576 = 760 in BCD:

 Decimal Arithmetic: (+375) + (-240) = +135

Hint 6: using 10’s of BCD

60

Binary Codes

 Other Decimal Codes

61

Binary Codes)

 Gray Code

◆ The advantage is that only bit in the

code group changes in going from

one number to the next.

» Error detection.

» Representation of analog data.

» Low power design.

000 001

010

100

110 111

101

011

1-1 and onto!! 62

Binary Codes

 American Standard Code for Information Interchange (ASCII) Character Code

63

Binary Codes

 ASCII Character Code

64

ASCII Character Codes

 American Standard Code for Information Interchange (Refer to

Table 1.7)

 A popular code used to represent information sent as character-

based data.

 It uses 7-bits to represent:

◆ 94 Graphic printing characters.

◆ 34 Non-printing characters.

 Some non-printing characters are used for text format (e.g. BS =

Backspace, CR = carriage return).

 Other non-printing characters are used for record marking and

flow control (e.g. STX and ETX start and end text areas).

65

ASCII Properties

 ASCII has some interesting properties:

◆ Digits 0 to 9 span Hexadecimal values 3016 to 3916

◆ Upper case A-Z span 4116 to 5A16

◆ Lower case a-z span 6116 to 7A16

» Lower to upper case translation (and vice versa) occurs by flipping bit 6.

66

Binary Codes

 Error-Detecting Code

◆ To detect errors in data communication and processing, an Eighth bit is

sometimes added to the ASCII character to indicate its parity.

◆ A parity bit is an extra bit included with a message to make the total

number of 1's either even or odd.

 Example:

◆ Consider the following two characters and their even and odd parity:

67

Binary Codes

 Error-Detecting Code

◆ Redundancy (e.g. extra information), in the form of extra bits, can be

incorporated into binary code words to detect and correct errors.

◆ A simple form of redundancy is parity, an extra bit appended onto the code

word to make the number of 1’s odd or even. Parity can detect all single-

bit errors and some multiple-bit errors.

◆ A code word has even parity if the number of 1’s in the code word is even.

◆ A code word has odd parity if the number of 1’s in the code word is odd.

◆ Example:

10001001

10001001

1

0 (odd parity)Message B:

Message A: (even parity)

68

1.8 Binary Storage and Registers

 Registers

◆ A binary cell is a device that possesses two stable states and is capable of storing

one of the two states.

◆ A register is a group of binary cells. A register with n cells can store any discrete

quantity of information that contains n bits.

 A binary cell
◆ Two stable state

◆ Store one bit of information

◆ Examples: flip-flop circuits, ferrite cores, capacitor

 A register
◆ A group of binary cells

◆ AX in x86 CPU

 Register Transfer
◆ A transfer of the information stored in one register to another.

◆ One of the major operations in digital system.
◆ An example in next slides.

n cells 2n possible states

69

A Digital Computer Example

Synchronous or

Asynchronous?

Inputs: Keyboard,

mouse, modem,

microphone

Outputs: CRT,

LCD, modem,

speakers

Memory

Control
unit

Datapath

Input/Output

CPU

70

Transfer of information

Figure 1.1 Transfer of information among register

Transfer of information

 The other major component

of a digital system

◆ Circuit elements to

manipulate individual bits of

information

◆ Load-store machine

LD R1;

LD R2;

ADD R2, R1;

SD R3;

Figure 1.2 Example of binary information processing

1.9 Binary Logic

 Definition of Binary Logic

◆ Binary logic consists of binary variables and a set of logical operations.

◆ The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc,

with each variable having two and only two distinct possible values: 1 and 0,

◆ Three basic logical operations: AND, OR, and NOT.

73

Binary Logic

 Truth Tables, Boolean Expressions, and Logic Gates

x
y z

x y z

0 0 0

0 1 0

1 0 0

1 1 1

x y z

0 0 0

0 1 1

1 0 1

1 1 1

x z

0 1

1 0

AND OR NOT

z = x = x’

x
y z x z

z = x • y = x y z = x + y

74

Binary Logic

 Truth Tables, Boolean Expressions, and Logic Gates

x y z

0 0 1

0 1 1

1 0 1

1 1 0

x y z

0 0 1

0 1 0

1 0 0

1 1 0

NAND NOR

z = (𝒙. 𝒚) z =(𝒙 + 𝒚)

75

Binary Logic

 Truth Tables, Boolean Expressions, and Logic Gates

x y z

0 0 0

0 1 1

1 0 1

1 1 0

x y z

0 0 1

0 1 0

1 0 0

1 1 1

XOR XNOR

z = ഥ𝒙.y+ x.ഥ𝒚 z = 𝐱. 𝐲 + 𝒙. 𝒚

76

Switching Circuits

ORAND

77

Binary Logic

 Logic gates

◆ Example of binary signals

0

1

2

3

Logic 1

Logic 0

Un-define

Figure 1.3 Example of binary signals 78

Binary Logic

 Logic gates

◆ Graphic Symbols and Input-Output Signals for Logic gates:

Fig. 1.4 Symbols for digital logic circuits

Fig. 1.5 Input-Output signals for gates 79

Binary Logic

 Logic gates

◆ Graphic Symbols and Input-Output Signals for Logic gates:

Fig. 1.6 Gates with multiple inputs

80

Week -6
Page(82-104)

81

Algebras

 What is an algebra?

◆ Mathematical system consisting of

» Set of elements

» Set of operators

» Axioms or postulates

 Why is it important?

◆ Defines rules of “calculations”

 Example: arithmetic on natural numbers

◆ Set of elements: N = {1,2,3,4,…}

◆ Operator: +, –, *

◆ Axioms: associativity, distributivity, closure, identity elements, etc.

 Note: operators with two inputs are called binary

◆ Does not mean they are restricted to binary numbers!

◆ Operator(s) with one input are called unary

82

BASIC DEFINITIONS

 A set is collection of having the same property.

◆ S: set, x and y: element or event

◆ For example: S = {1, 2, 3, 4}

» If x = 2, then xS.

» If y = 5, then y S.

 A binary operator defines on a set S of elements is a rule that

assigns, to each pair of elements from S, a unique element from S.

◆ For example: given a set S, consider a*b = c and * is a binary operator.

◆ We say that, * is a binary operator if it is specifies a rule for finding c from

the pair (a, b) and also if a, b, c S.

◆ On the other hand, * is not a binary operator if a, b S,while the rule

finds c  S.

83

BASIC DEFINITIONS

 The most common postulates used to formulate various
algebraic structures are as follows:

1. Closure: a set S is closed with respect to a binary operator if, for every pair
of elements of S, the binary operator specifies a rule for obtaining a unique
element of S.

◆ For example, natural numbers N={1,2,3,...} is closed w.r.t. the binary operator
+ by the rule of arithmetic addition, since, for any a, bN, there is a unique
cN such that

» a+b = c

» But operator – is not closed for N, because 2-3 = -1 and 2, 3 N, but (-1)N.

2. Associative law: a binary operator * on a set S is said to be associative
whenever

◆ (x * y) * z = x * (y * z) for all x, y, zS

» (x+y)+z = x+(y+z)

3. Commutative law: a binary operator * on a set S is said to be commutative
whenever

◆ x * y = y * x for all x, yS

» x+y = y+x

84

BASIC DEFINITIONS

4. Identity element: a set S is said to have an identity element with respect to a

binary operation * on S if there exists an element eS with the property that

◆ e * x = x * e = x for every xS

» 0+x = x+0 =x for every xI . I = {…, -3, -2, -1, 0, 1, 2, 3, …}.

» 1*x = x*1 =x for every xI. I = {…, -3, -2, -1, 0, 1, 2, 3, …}.

5. Inverse: a set having the identity element e with respect to the binary operator

to have an inverse whenever, for every xS, there exists an element yS such

that

◆ x * y = e

» The operator + over I, with e = 0, the inverse of an element a is (-a), since a+(-a) = 0.

6. Distributive law: if * and．are two binary operators on a set S, * is said to be

distributive over . whenever

◆ x * (y．z) = (x * y)．(x * z)

85

George Boole

 Father of Boolean algebra
 He came up with a type of linguistic algebra, the three most

basic operations of which were (and still are) AND, OR and

NOT. It was these three functions that formed the basis of his

premise, and were the only operations necessary to perform

comparisons or basic mathematical functions.

 Boole’s system (detailed in his 'An Investigation of the Laws

of Thought, on Which Are Founded the Mathematical

Theories of Logic and Probabilities', 1854) was based on a

binary approach, processing only two objects - the yes-no,

true-false, on-off, zero-one approach.
 Surprisingly, given his standing in the academic community,

Boole's idea was either criticized or completely ignored by

the majority of his peers.

 Eventually, one bright student, Claude Shannon (1916-2001),

picked up the idea and ran with it

86

George Boole (1815 - 1864)

Axiomatic Definition of Boolean Algebra

 We need to define algebra for binary values

◆ Developed by George Boole in 1854

 Huntington postulates for Boolean algebra (1904):

 B = {0, 1} and two binary operations, + and．

◆ Closure with respect to operator + and operator ·

◆ Identity element 0 for operator + and 1 for operator ·

◆ Commutativity with respect to + and ·

 x+y = y+x, x·y = y·x

◆ Distributivity of · over +, and + over ·

 x·(y+z) = (x·y)+(x·z) and x+(y·z) = (x+y)·(x+z)

⚫ Complement for every element x is x’ with x+x’=1, x·x’=0

◆ There are at least two elements x,yB such that xy

87

Boolean Algebra

 Terminology:

◆ Literal: A variable or its complement

◆ Product term: literals connected by •

◆ Sum term: literals connected by +

88

Postulates of Two-Valued Boolean
Algebra

 B = {0, 1} and two binary operations, + and．

 The rules of operations: AND、OR and NOT.

1. Closure (+ and‧)

2. The identity elements

(1) +: 0

(2)．: 1

x y x．y

0 0 0

0 1 0

1 0 0

1 1 1

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

x x'

0 1

1 0

AND OR NOT

Postulates of Two-Valued Boolean
Algebra

3. The commutative laws

4. The distributive laws

x y z y+z x．(y+z) x．y x．z (x．y)+(x．z)

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1

Postulates of Two-Valued Boolean
Algebra

5. Complement

◆ x+x'=1 → 0+0'=0+1=1; 1+1'=1+0=1

◆ x．x'=0 → 0．0'=0．1=0; 1．1'=1．0=0

6. Has two distinct elements 1 and 0, with 0 ≠ 1

 Note

◆ A set of two elements

◆ + : OR operation; ．: AND operation

◆ A complement operator: NOT operation

◆ Binary logic is a two-valued Boolean algebra

Duality

 The principle of duality is an important concept. This

says that if an expression is valid in Boolean algebra,

the dual of that expression is also valid.

 To form the dual of an expression, replace all +

operators with . operators, all . operators with +

operators, all ones with zeros, and all zeros with ones.

 Form the dual of the expression

a + (b.c) = (a + b).(a + c)

 Following the replacement rules…

a.(b + c) = a.b + a.c

 Take care not to alter the location of the parentheses if

they are present.

92

Basic Theorems

93

Boolean Theorems

 Huntington’s postulates define some rules

 Need more rules to modify
 algebraic expressions

◆ Theorems that are derived from postulates

 What is a theorem?

◆ A formula or statement that is derived from postulates

(or other proven theorems)

 Basic theorems of Boolean algebra

◆ Theorem 1 (a): x + x = x (b): x · x = x

◆ Looks straightforward, but needs to be proven !

94

Post. 1: closure
Post. 2: (a) x+0=x, (b) x·1=x
Post. 3: (a) x+y=y+x, (b) x·y=y·x
Post. 4: (a) x(y+z) = xy+xz,
 (b) x+yz = (x+y)(x+z)
Post. 5: (a) x+x’=1, (b) x·x’=0

Proof of x+x=x

 We can only use

Huntington postulates:

 Show that x+x=x.

 x+x = (x+x)·1 by 2(b)

 = (x+x)(x+x’) by 5(a)

 = x+xx’ by 4(b)

 = x+0 by 5(b)

 = x by 2(a)

 Q.E.D.

 We can now use Theorem 1(a) in future proofs

95

Huntington postulates:

Post. 2: (a) x+0=x, (b) x·1=x
Post. 3: (a) x+y=y+x, (b) x·y=y·x
Post. 4: (a) x(y+z) = xy+xz,

 (b) x+yz = (x+y)(x+z)
Post. 5: (a) x+x’=1, (b) x·x’=0

Proof of x·x=x

 Similar to previous

proof

 Show that x·x = x.

 x·x = xx+0 by 2(a)

 = xx+xx’by 5(b)

 = x(x+x’) by 4(a)

 = x·1 by 5(a)

 = x by 2(b)

 Q.E.D.

96

Huntington postulates:

Post. 2: (a) x+0=x, (b) x·1=x
Post. 3: (a) x+y=y+x, (b) x·y=y·x
Post. 4: (a) x(y+z) = xy+xz,

 (b) x+yz = (x+y)(x+z)
Post. 5: (a) x+x’=1, (b) x·x’=0
Th. 1: (a) x+x=x

Proof of x+1=1

 Theorem 2(a): x + 1 = 1

 x + 1 = 1．(x + 1) by 2(b)

 =(x + x')(x + 1) 5(a)

 = x + x' 1 4(b)

 = x + x' 2(b)

 = 1 5(a)

 Theorem 2(b): x．0 = 0 by duality

 Theorem 3: (x')' = x

◆ Postulate 5 defines the complement of x, x + x' = 1 and x x' = 0

◆ The complement of x' is x is also (x')'

97

Huntington postulates:

Post. 2: (a) x+0=x, (b) x·1=x
Post. 3: (a) x+y=y+x, (b) x·y=y·x
Post. 4: (a) x(y+z) = xy+xz,
 (b) x+yz = (x+y)(x+z)
Post. 5: (a) x+x’=1, (b) x·x’=0
Th. 1: (a) x+x=x

Absorption Property (Covering)

 Theorem 6(a): x + xy = x

◆ x + xy = x．1 + xy by 2(b)

 = x (1 + y) 4(a)

 = x (y + 1) 3(a)

 = x．1 Th 2(a)

 = x 2(b)

 Theorem 6(b): x (x + y) = x by duality

 By means of truth table (another way to proof)

x y xy x+xy

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

98

Huntington postulates:

Post. 2: (a) x+0=x, (b) x·1=x
Post. 3: (a) x+y=y+x, (b) x·y=y·x
Post. 4: (a) x(y+z) = xy+xz,
 (b) x+yz = (x+y)(x+z)
Post. 5: (a) x+x’=1, (b) x·x’=0
Th. 1: (a) x+x=x

DeMorgan’s Theorem

 Theorem 5(a): (x + y)’ = x’y’

 Theorem 5(b): (xy)’ = x’ + y’

 By means of truth table

x y x’ y’ x+y (x+y)’ x’y’ xy x’+y' (xy)’

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 0

99

Consensus Theorem

1. x.y + x’.z + y.z = x.y + x’.z

2. (x+y)•(x’+z)•(y+z) = (x+y)•(x’+z) -- (dual)

 Proof:

xy + x’z + yz = xy + x’z + (x+x’)yz

 = xy + x’z + xyz + x’yz

 = (xy + xyz) + (x’z + x’zy)

 = xy + x’z
QED (2 true by duality).

100

Operator Precedence

 The operator precedence for evaluating Boolean Expression is

◆ Parentheses

◆ NOT

◆ AND

◆ OR

 Examples

◆ x y' + z

◆ (x y + z)'

101

Boolean Functions

 A Boolean function

◆ Binary variables

◆ Binary operators OR and AND

◆ Unary operator NOT

◆ Parentheses

 Examples

◆ F1= x y z'

◆ F2 = x + y'z

◆ F3 = x' y' z + x' y z + x y'

◆ F4 = x y' + x' z

Boolean Functions

 The truth table of 2n entries


 Two Boolean expressions may specify the same function

◆ F3 = F4

x y z F1 F2 F3 F4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

Boolean Functions

 Implementation with logic gates

◆ F4 is more economical

F4 = x y' + x' z

F3 = x' y' z + x' y z + x y'

F2 = x + y'z

Week -7
Page(106-120)

105

Algebraic Manipulation

 To minimize Boolean expressions

◆ Literal: a primed or unprimed variable (an input to a gate)

◆ Term: an implementation with a gate

◆ The minimization of the number of literals and the number of terms

→ a circuit with less equipment

◆ It is a hard problem (no specific rules to follow)

 Example 2.1

1. x(x'+y) = xx' + xy = 0+xy = xy

2. x+x'y = (x+x')(x+y) = 1 (x+y) = x+y

3. (x+y)(x+y') = x+xy+xy'+yy' = x(1+y+y') = x

4. xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + yzx + yzx' = xy(1+z) +

x'z(1+y) = xy +x'z

5. (x+y)(x'+z)(y+z) = (x+y)(x'+z), by duality from function 4.

(consensus theorem with duality)

Complement of a Function

 An interchange of 0's for 1's and 1's for 0's in the value of F

◆ By DeMorgan's theorem

◆ (A+B+C)' = (A+X)' let B+C = X

 = A'X' by theorem 5(a) (DeMorgan's)

 = A'(B+C)' substitute B+C = X

 = A'(B'C') by theorem 5(a) (DeMorgan's)

 = A'B'C' by theorem 4(b) (associative)

 Generalizations: a function is obtained by interchanging

AND and OR operators and complementing each literal.

◆ (A+B+C+D+ ... +F)' = A'B'C'D'... F'

◆ (ABCD ... F)' = A'+ B'+C'+D' ... +F'

Examples

 Example 2.2

◆ F1' = (x'yz' + x'y'z)' = (x'yz')' (x'y'z)' = (x+y'+z) (x+y+z')

◆ F2' = [x(y'z'+yz)]' = x' + (y'z'+yz)' = x' + (y'z')' (yz)‘

 = x' + (y+z) (y'+z')

 = x' + yz‘+y'z

 Example 2.3: a simpler procedure

◆ Take the dual of the function and complement each literal

1. F1 = x'yz' + x'y'z.

 The dual of F1 is (x'+y+z') (x'+y'+z).

 Complement each literal: (x+y'+z)(x+y+z') = F1'

2. F2 = x(y' z' + yz).

 The dual of F2 is x+(y'+z') (y+z).

 Complement each literal: x'+(y+z)(y' +z') = F2'

2.6 Canonical and Standard Forms

Minterms and Maxterms

 A minterm (standard product): an AND term consists of all

literals in their normal form or in their complement form.

◆ For example, two binary variables x and y,

» xy, xy', x'y, x'y'

◆ It is also called a standard product.

◆ n variables con be combined to form 2n minterms.

 A maxterm (standard sums): an OR term

◆ It is also call a standard sum.

◆ 2n maxterms.

Minterms and Maxterms

 Each maxterm is the complement of its corresponding

minterm, and vice versa.

Minterms and Maxterms

 An Boolean function can be expressed by

◆ A truth table

◆ Sum of minterms

◆ f1 = x'y'z + xy'z' + xyz = m1 + m4 +m7 (Minterms)

◆ f2 = x'yz+ xy'z + xyz'+xyz = m3 + m5 +m6 + m7 (Minterms)

Minterms and Maxterms

 The complement of a Boolean function

◆ The minterms that produce a 0

◆ f1' = m0 + m2 +m3 + m5 + m6 = x'y'z'+x'yz'+x'yz+xy'z+xyz'

◆ f1 = (f1')'

 = (x+y+z)(x+y'+z) (x+y'+z') (x'+y+z')(x'+y'+z) = M0 M2 M3 M5 M6

◆ f2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)=M0M1M2M4

 Any Boolean function can be expressed as

◆ A sum of minterms (“sum” meaning the ORing of terms).

◆ A product of maxterms (“product” meaning the ANDing of terms).

◆ Both boolean functions are said to be in Canonical form.

Sum of Minterms

 Sum of minterms: there are 2n minterms and 22n combinations

of function with n Boolean variables.

 Example 2.4: express F = A+BC' as a sum of minterms.

◆ F = A+B'C = A (B+B') + B'C = AB +AB' + B'C = AB(C+C') +

AB'(C+C') + (A+A')B'C = ABC+ABC'+AB'C+AB'C'+A'B'C

◆ F = A'B'C +AB'C' +AB'C+ABC'+ ABC = m1 + m4 +m5 + m6 + m7

◆ F(A, B, C) = (1, 4, 5, 6, 7)

◆ or, built the truth table first

Product of Maxterms

 Product of maxterms: using distributive law to expand.

◆ x + yz = (x + y)(x + z) = (x+y+zz')(x+z+yy') =
(x+y+z)(x+y+z')(x+y'+z)

 Example 2.5: express F = xy + x'z as a product of maxterms.

◆ F = xy + x'z = (xy + x')(xy +z) = (x+x')(y+x')(x+z)(y+z) =
(x'+y)(x+z)(y+z)

◆ x'+y = x' + y + zz' = (x'+y+z)(x'+y+z')

◆ F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z') = M0M2M4M5

◆ F(x, y, z) = (0, 2, 4, 5)

Conversion between Canonical Forms

 The complement of a function expressed as the sum of

minterms equals the sum of minterms missing from the

original function.

◆ F(A, B, C) = (1, 4, 5, 6, 7)

◆ Thus, F'(A, B, C) = (0, 2, 3)

◆ By DeMorgan's theorem

 F(A, B, C) = (0, 2, 3)

 F'(A, B, C) = (1, 4, 5, 6, 7)

◆ mj' = Mj

◆ Sum of minterms = product of maxterms

◆ Interchange the symbols  and  and list those numbers missing from

the original form

»  of 1's

»  of 0's

 Example

◆ F = xy + xz

◆ F(x, y, z) = (1, 3, 6, 7)

◆ F(x, y, z) =  (0, 2, 4, 6)

Standard Forms

 Canonical forms are very seldom the ones with the least

number of literals.

 Standard forms: the terms that form the function may obtain

one, two, or any number of literals.

◆ Sum of products: F1 = y' + xy+ x'yz'

◆ Product of sums: F2 = x(y'+z)(x'+y+z')

◆ F3 = A'B'CD+ABC'D'

Implementation

 Two-level implementation

 Multi-level implementation

F1 = y' + xy+ x'yz' F2 = x(y'+z)(x'+y+z')

2.7 Other Logic Operations (

 2n rows in the truth table of n binary variables.

 22n
 functions for n binary variables.

 16 functions of two binary variables.

 All the new symbols except for the exclusive-OR symbol are

not in common use by digital designers.

Boolean Expressions

Week -8
Page(122-136)

121

2.8 Digital Logic Gates

 Boolean expression: AND, OR and NOT operations

 Constructing gates of other logic operations

◆ The feasibility and economy;

◆ The possibility of extending gate's inputs;

◆ The basic properties of the binary operations (commutative and

associative);

◆ The ability of the gate to implement Boolean functions.

Standard Gates

 Consider the 16 functions in Table 2.8 (slide 33)

◆ Two are equal to a constant (F0 and F15).

◆ Four are repeated twice (F4, F5, F10 and F11).

◆ Inhibition (F2) and implication (F13) are not commutative or

associative.

◆ The other eight: complement (F12), transfer (F3), AND (F1), OR (F7),

NAND (F14), NOR (F8), XOR (F6), and equivalence (XNOR) (F9) are

used as standard gates.

◆ Complement: inverter.

◆ Transfer: buffer (increasing drive strength).

◆ Equivalence: XNOR.

Figure 2.5 Digital logic gates

Summary of Logic Gates

Figure 2.5 Digital logic gates

Summary of Logic Gates

Multiple Inputs

 Extension to multiple inputs

◆ A gate can be extended to multiple inputs.

» If its binary operation is commutative and associative.

◆ AND and OR are commutative and associative.

» OR
− x+y = y+x

− (x+y)+z = x+(y+z) = x+y+z

» AND
− xy = yx

− (x y)z = x(y z) = x y z

Multiple Inputs

◆ NAND and NOR are commutative but not associative → they are not

extendable.

Figure 2.6 Demonstrating the nonassociativity of the NOR operator; (x ↓ y) ↓ z ≠ x ↓(y ↓

z)

Multiple Inputs

◆ Multiple NOR = a complement of OR gate, Multiple NAND = a

complement of AND.

◆ The cascaded NAND operations = sum of products.

◆ The cascaded NOR operations = product of sums.

Figure 2.7 Multiple-input and cascated NOR and NAND gates

Multiple Inputs

◆ The XOR and XNOR gates are commutative and associative.

◆ Multiple-input XOR gates are uncommon?

◆ XOR is an odd function: it is equal to 1 if the inputs variables have an

odd number of 1's.

Figure 2.8 3-input XOR gate

Positive and Negative Logic

 Positive and Negative Logic

◆ Two signal values <=> two logic

values

◆ Positive logic: H=1; L=0

◆ Negative logic: H=0; L=1

 Consider a TTL gate

◆ A positive logic AND gate

◆ A negative logic OR gate

◆ The positive logic is used in this

book

Figure 2.9 Signal assignment and logic polarity

Figure 2.10 Demonstration of positive and negative logic

Positive and Negative Logic

2.9 Integrated Circuits

Level of Integration

 An IC (a chip)

 Examples:

◆ Small-scale Integration (SSI): < 10 gates

◆ Medium-scale Integration (MSI): 10 ~ 100 gates

◆ Large-scale Integration (LSI): 100 ~ xk gates

◆ Very Large-scale Integration (VLSI): > xk gates

 VLSI

◆ Small size (compact size)

◆ Low cost

◆ Low power consumption

◆ High reliability

◆ High speed

Digital Logic Families

 Digital logic families: circuit technology

◆ TTL: transistor-transistor logic (dying?)

◆ ECL: emitter-coupled logic (high speed, high power consumption)

◆ MOS: metal-oxide semiconductor (NMOS, high density)

◆ CMOS: complementary MOS (low power)

◆ BiCMOS: high speed, high density

Digital Logic Families

 The characteristics of digital logic families

◆ Fan-out: the number of standard loads that the output of a typical gate

can drive.

◆ Power dissipation.

◆ Propagation delay: the average transition delay time for the signal to

propagate from input to output.

◆ Noise margin: the minimum of external noise voltage that caused an

undesirable change in the circuit output.

CAD

 CAD – Computer-Aided Design

◆ Millions of transistors

◆ Computer-based representation and aid

◆ Automatic the design process

◆ Design entry

» Schematic capture

» HDL – Hardware Description Language
− Verilog, VHDL

◆ Simulation

◆ Physical realization

» ASIC, FPGA, PLD

Chip Design

 Why is it better to have more gates on a single chip?

◆ Easier to build systems

◆ Lower power consumption

◆ Higher clock frequencies

 What are the drawbacks of large circuits?

◆ Complex to design

◆ Chips have design constraints

◆ Hard to test

 Need tools to help develop integrated circuits

◆ Computer Aided Design (CAD) tools

◆ Automate tedious steps of design process

◆ Hardware description language (HDL) describe circuits

◆ VHDL (see the lab) is one such system
136

Week -9
Page(138-159)

137

3-1 Introduction

 Gate-level minimization refers to the design task of finding

an optimal gate-level implementation of Boolean functions

describing a digital circuit.

3-2 The Map Method

 The complexity of the digital logic gates

◆ The complexity of the algebraic expression

 Logic minimization

◆ Algebraic approaches: lack specific rules

◆ The Karnaugh map

» A simple straight forward procedure

» A pictorial form of a truth table

» Applicable if the # of variables < 7

 A diagram made up of squares

◆ Each square represents one minterm

Review of Boolean Function

 Boolean function

◆ Sum of minterms

◆ Sum of products (or product of sum) in the simplest form

◆ A minimum number of terms

◆ A minimum number of literals

◆ The simplified expression may not be unique

Two-Variable Map

 A two-variable map

◆ Four minterms

◆ x' = row 0; x = row 1

◆ y' = column 0; y = column

1

◆ A truth table in square

diagram

◆ Fig. 3.2(a): xy = m3

◆ Fig. 3.2(b): x+y = x'y+xy'

+xy = m1+m2+m3

Figure 3.2 Representation of functions in the map

Figure 3.1 Two-variable Map

A Three-variable Map

 A three-variable map

◆ Eight minterms

◆ The Gray code sequence

◆ Any two adjacent squares in the map differ by only on variable

» Primed in one square and unprimed in the other

» e.g., m5 and m7 can be simplified

» m5+ m7 = xy'z + xyz = xz (y'+y) = xz

Figure 3.3 Three-variable Map

A Three-variable Map

◆ m0 and m2 (m4 and m6) are adjacent

◆ m0+ m2 = x'y'z' + x'yz' = x'z' (y'+y) = x'z'

◆ m4+ m6 = xy'z' + xyz' = xz' (y'+y) = xz'

Example 3.1

 Example 3.1: simplify the Boolean function F(x, y, z) = (2, 3,

4, 5)

◆ F(x, y, z) = (2, 3, 4, 5) = x'y + xy'

Figure 3.4 Map for Example 3.1, F(x, y, z) = Σ(2, 3, 4, 5) = x'y + xy'

Example 3.2

 Example 3.2: simplify F(x, y, z) = (3, 4, 6, 7)

◆ F(x, y, z) = (3, 4, 6, 7) = yz+ xz'

Figure 3.5 Map for Example 3-2; F(x, y, z) = Σ(3, 4, 6, 7) = yz + xz'

Four adjacent Squares

 Consider four adjacent squares

◆ 2, 4, and 8 squares

◆ m0+m2+m4+m6 = x'y'z'+x'yz'+xy'z'+xyz' = x'z'(y'+y) +xz'(y'+y) = x'z'

+ xz‘ = z'

◆ m1+m3+m5+m7 = x'y'z+x'yz+xy'z+xyz =x'z(y'+y) + xz(y'+y) =x'z +

xz = z

Figure 3.3 Three-variable Map

Example 3.3

 Example 3.3: simplify F(x, y, z) = (0, 2, 4, 5, 6)

◆ F(x, y, z) = (0, 2, 4, 5, 6) = z'+ xy'

Figure 3.6 Map for Example 3-3, F(x, y, z) = Σ(0, 2, 4, 5, 6) = z' +xy'

Example 3.4

 Example 3.4: let F = A'C + A'B + AB'C + BC

a) Express it in sum of minterms.

b) Find the minimal sum of products expression.

Ans:

 F(A, B, C) = (1, 2, 3, 5, 7) = C + A'B

Figure 3.7 Map for Example 3.4, A'C + A'B + AB'C + BC = C + A'B

3.3 Four-Variable Map

 The map

◆ 16 minterms

◆ Combinations of 2, 4, 8, and 16 adjacent squares

Figure 3.8 Four-variable Map

Example 3.5

 Example 3.5: simplify F(w, x, y, z) = (0, 1, 2, 4, 5, 6, 8, 9,

12, 13, 14)

F = y'+w'z'+xz'

Figure 3.9 Map for Example 3-5; F(w, x, y, z) = Σ(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w' z' +xz'

Example 3.6

 Example 3-6: simplify F = ABC + BCD + ABCD +

ABC

Figure 3.9 Map for Example 3-6; ABC + BCD + ABCD + ABC= BD +

BC +ACD

Prime Implicants

 Prime Implicants

◆ All the minterms are covered.

◆ Minimize the number of terms.

◆ A prime implicant: a product term obtained by combining the

maximum possible number of adjacent squares (combining all

possible maximum numbers of squares).

◆ Essential P.I.: a minterm is covered by only one prime implicant.

◆ The essential P.I. must be included.

Prime Implicants

 Consider F(A, B, C, D) = Σ(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

◆ The simplified expression may not be unique

◆ F = BD+B'D'+CD+AD = BD+B'D'+CD+AB'

 = BD+B'D'+B'C+AD = BD+B'D'+B'C+AB'

Figure 3.11 Simplification Using Prime Implicants

3.4 Five-Variable Map

 Map for more than four variables becomes complicated
◆ Five-variable map: two four-variable map (one on the top of the

other).

Figure 3.12 Five-variable Map

Example 3.7

 Example 3.7: simplify F = (0, 2, 4, 6, 9, 13, 21, 23, 25, 29,

31)

F = A'B'E'+BD'E+ACE

3-5 Product of Sums Simplification

 Approach #1

◆ Simplified F' in the form of sum of products

◆ Apply DeMorgan's theorem F = (F')'

◆ F': sum of products → F: product of sums

 Approach #2: duality

◆ Combinations of maxterms (it was minterms)

◆ M0M1 = (A+B+C+D)(A+B+C+D') = (A+B+C)+(DD') = A+B+C

M0 M1 M3 M2

M4 M5 M7 M6

M12 M13 M15 M14

M8 M9 M11 M10

00

01

11

10

00 01 11 10AB

CD

Example 3.8

 Example 3.8: simplify F = (0, 1, 2, 5, 8, 9, 10) into (a) sum-
of-products form, and (b) product-of-sums form:

Figure 3.14 Map for Example 3.8, F(A, B, C, D)= (0, 1, 2, 5, 8, 9, 10)

= B'D'+B'C'+A'C'D

a) F(A, B, C, D)= (0, 1, 2, 5, 8,

9, 10) = B'D'+B'C'+A'C'D

b) F' = AB+CD+BD'
» Apply DeMorgan's theorem;

F=(A'+B')(C'+D')(B'+D)

» Or think in terms of maxterms

Example 3.8 (cont.)

 Gate implementation of the function of Example 3.8

Figure 3.15 Gate Implementation of the Function of Example 3.8

Product-of sums formSum-of products form

Sum-of-Minterm Procedure

 Consider the function defined in Table 3.2.

◆ In sum-of-minterm:

◆ In sum-of-maxterm:

◆ Taking the complement of F

(, ,) (1,3,4,6)F x y z = 

(, ,) (0,2,5,7)F x y z = 

(, ,) ()()F x y z x z x z = + +

Week -10
Page(161-184)

160

3-6 Don't-Care Conditions

 The value of a function is not specified for certain

combinations of variables

◆ BCD; 1010-1111: don't care

 The don't-care conditions can be utilized in logic

minimization

◆ Can be implemented as 0 or 1

 Example 3.9: simplify F(w, x, y, z) = (1, 3, 7, 11, 15) which

has the don't-care conditions d(w, x, y, z) = (0, 2, 5).

Example 3.9 (cont.)

◆ F = yz + w'x'; F = yz + w'z

◆ F = (1, 3, 7, 11, 15) ; F = d (1, 3, 5, 7, 11, 15)

◆ Either expression is acceptable

Figure 3.17 Example with don't-care Conditions

3-7 NAND and NOR
Implementation

 NAND gate is a universal gate

◆ Can implement any digital system

Figure 3.18 Logic Operations with NAND Gates

NAND Gate

 Two graphic symbols for a NAND gate

Figure 3.19 Two Graphic Symbols for NAND Gate

Example 3.10

 Example 3-10: implement F(x, y, z) =

(, ,) (1,2,3,4,5,7)F x y z =  (, ,)F x y z xy x y z = + +

Figure 3.21 Solution to Example 3-10

Multilevel NAND Circuits

 Boolean function implementation

◆ AND-OR logic → NAND-NAND logic

» AND → AND + inverter

» OR: inverter + OR = NAND

» For every bubble that is not compensated by another

small circle along the same line, insert an inverter.

Figure 3.22 Implementing F = A(CD + B) + BC

NAND Implementation

Figure 3.23 Implementing F = (AB +AB)(C+ D)

NOR Implementation

 NOR function is the dual of NAND function.

 The NOR gate is also universal.

Figure 3.24 Logic Operation with NOR Gates

Two Graphic Symbols for a NOR
Gate

Example: F = (A + B)(C + D)E

Figure 3.26 Implementing F = (A + B)(C + D)E

Figure 3.25 Two Graphic Symbols for NOR Gate

Example

Example: F = (AB +AB)(C + D)

Figure 3.27 Implementing F = (AB +AB)(C + D) with NOR gates

3-8 Other Two-level
Implementations (

 Wired logic
◆ A wire connection between the outputs of two gates

◆ Open-collector TTL NAND gates: wired-AND logic

◆ The NOR output of ECL gates: wired-OR logic

() () () ()()

() () [()()]

F AB CD AB CD A B C D

F A B C D A B C D

      =  = + = + +

  = + + + = + +

AND-OR-INVERT function

OR-AND-INVERT function

Figure 3.28 Wired Logic

AND-OR-Invert Implementation

 AND-OR-INVERT (AOI) Implementation

◆ NAND-AND = AND-NOR = AOI

◆ F = (AB+CD+E)'

◆ F' = AB+CD+E (sum of products)

Figure 3.29 AND-OR-INVERT circuits, F = (AB +CD +E)

OR-AND-Invert Implementation

 OR-AND-INVERT (OAI) Implementation

◆ OR-NAND = NOR-OR = OAI

◆ F = ((A+B)(C+D)E)'

◆ F' = (A+B)(C+D)E (product of sums)

Figure 3.30 OR-AND-INVERT circuits, F = ((A+B)(C+D)E)'

Figure 3.31 Other Two-level Implementations

Exclusive-OR Implementations

 Implementations

◆ (x'+y')x + (x'+y')y = xy'+x'y = xy

Figure 3.32 Exclusive-OR Implementations

Odd Function

◆ ABC = (AB'+A'B)C' +(AB+A'B')C = AB'C'+A'BC'+ABC+A'B'C

= (1, 2, 4, 7)

◆ XOR is a odd function → an odd number of 1's, then F = 1.

◆ XNOR is a even function → an even number of 1's, then F = 1.

Figure 3.33 Map for a Three-variable Exclusive-OR Function

XOR and XNOR

 Logic diagram of odd and even functions

Figure 3.34 Logic Diagram of Odd and Even Functions

Parity Generation and Checking

Parity Generation and Checking

Combinational Circuits

 Output is function of input only

i.e. no feedback

When input changes, output may change (after a delay)

180 /

65

•
•
•

•
•
•

n inputs m outputs
Combinational

Circuits



Combinational Circuits

 Analysis

◆ Given a circuit, find out its function

◆ Function may be expressed as:

» Boolean function

» Truth table

 Design

◆ Given a desired function, determine its circuit

◆ Function may be expressed as:

» Boolean function

» Truth table

181 /

65

C

B
A

C

B
A

B
A

C
A

C
B

F1

F2

?

?

?

Analysis Procedure

 Boolean Expression Approach

182 /

65

C

B
A

C

B
A

B
A

C
A

C
B

F1

F2

T2=ABC

T1=A+B+C

F2=AB+AC+BC

F’2=(A’+B’)(A’+C’)(B’+C’)

T3=AB'C'+A'BC'+A'B'C

F1=AB'C'+A'BC'+A'B'C+ABC

F2=AB+AC+BC

C

B
A

C

B
A

B
A

C
A

C
B

F1

F2

Analysis Procedure

 Truth Table Approach

183 /

65

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

1

1

1

1

1

1

0

0

1

A B C F1 F2

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

B

0 1 0 1

A 1 0 1 0

C

B

0 0 1 0

A 0 1 1 1

C

F1=AB'C'+A'BC'+A'B'C+ABC F2=AB+AC+BC

Design Procedure

 Given a problem statement:

◆ Determine the number of inputs and outputs

◆ Derive the truth table

◆ Simplify the Boolean expression for each output

◆ Produce the required circuit

Example:

 Design a circuit to convert a “BCD” code to “Excess 3” code

184 /

65

➢ 4-bits

➢ 0-9 values

➢ 4-bits

➢ Value+3
?

Week -11
Page(186-188)

185

Design Procedure

 BCD-to-Excess 3 Converter

186 /

65

A B C D w x y z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 x x x x

1 0 1 1 x x x x

1 1 0 0 x x x x

1 1 0 1 x x x x

1 1 1 0 x x x x

1 1 1 1 x x x x

C

1 1 1
B

A
x x x x

1 1 x x

D

C

1 1 1

1
B

A
x x x x

1 x x

D

C

1 1

1 1
B

A
x x x x

1 x x

D

C

1 1

1 1
B

A
x x x x

1 x x

D

w = A+BC+BD x = B’C+B’D+BC’D’

y = C’D’+CD z = D’

Design Procedure

 BCD-to-Excess 3 Converter

187 /

65

A B C D w x y z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 x x x x

1 0 1 1 x x x x

1 1 0 0 x x x x

1 1 0 1 x x x x

1 1 1 0 x x x x

1 1 1 1 x x x x

w

x

D

C

z

y

B

A

w = A + B(C+D)

x = B’(C+D) + B(C+D)’

y = (C+D)’ + CD

z = D’

Seven-Segment Decoder

188 /

65

a

b

c

g

e

d

f

?

w

x

y

z

a
b
c
d
e
f
g

w x y z a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

1 0 1 0 x x x x x x x

1 0 1 1 x x x x x x x

1 1 0 0 x x x x x x x

1 1 0 1 x x x x x x x

1 1 1 0 x x x x x x x

1 1 1 1 x x x x x x x

y

1 1 1

1 1 1
x

w
x x x x

1 1 x x

z

BCD code

a = w + y + xz + x’z’ b = . . .
c = . . .

d = . . .

Week -12
Page(190-211)

189

Binary Adder

 Half Adder

◆ Adds 1-bit plus 1-bit

◆ Produces Sum and Carry

190 /

65

HA
x

y

S

C

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

x

+ y

───

C S

x

y

S

C

Binary Adder

 Full Adder

◆ Adds 1-bit plus 1-bit plus 1-bit

◆ Produces Sum and Carry

191 /

65

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

x

+ y

+ z

───

C S

FA
x
y
z

S

C

y

0 1 0 1

x 1 0 1 0

z

y

0 0 1 0

x 0 1 1 1

z

S = xy'z'+x'yz'+x'y'z+xyz = x  y  z

C = xy + xz + yz

Binary Adder

 Full Adder

192 /

65

x

y

z

S

C

x
y

x
z

y
z

x
y
z
x
y
z
x
y
z
x
y
z

x
y
z

x

y

z

x
y

x
z

y
z

S

C

S = xy'z'+x'yz'+x'y'z+xyz = x  y  z

C = xy + xz + yz

Binary Adder

 Full Adder

193 /

65

x

y

z

S

C

HA
x
y

z

HA
S

C

Binary Adder

194 /

65

c3 c2 c1 .

+ x3 x2 x1 x0

+ y3 y2 y1 y0

────────

Cy S3 S2 S1 S0

FA

x3 x2 x1 x0

FAFAFA

y3 y2 y1 y0

S3 S2 S1 S0

C4 C3 C2 C1

0

Binary Adder

x3x2x1x0 y3y2y1y0

S3S2S1S0

C0Cy

Carry

Propagate

Addition

Binary Adder

 Carry Propagate Adder

195 /

65

CPA

A3 A2 A1 A0 B3 B2 B1 B0

S3 S2 S1 S0

C0CyCPA

A3 A2 A1 A0 B3 B2 B1 B0

S3 S2 S1 S0

C0Cy

x3 x2 x1 x0
y3 y2 y1 y0

x7 x6 x5 x4
y7 y6 y5 y4

S3 S2 S1 S0S7 S6 S5 S4

0

 Carry propagation

◆ When the correct outputs are available

◆ The critical path counts (the worst case)

◆ (A1, B1, C1) → C2 → C3 → C4 → (C5, S4)

◆ When 4-bits full-adder → 8 gate levels (n-bits: 2n gate levels)

Figure 4.10 Full Adder with P and G Shown

Binary Subtractor

 Use 2’s complement with binary adder

◆ x – y = x + (-y) = x + y’ + 1

197 /

65

Binary Adder

 A3 A2 A1 A0 B3 B2 B1 B0

S3 S2 S1 S0

CiCy 1

x3 x2 x1 x0 y3 y2 y1 y0

F3 F2 F1 F0

Binary Adder/Subtractor

 M: Control Signal (Mode)

◆ M=0 ➔ F = x + y

◆ M=1 ➔ F = x – y

198 /

65

Binary Adder

 A3 A2 A1 A0 B3 B2 B1 B0

S3 S2 S1 S0

CiCy

Mx3 x2 x1 x0 y3 y2 y1 y0

F3 F2 F1 F0

Overflow

 Unsigned Binary Numbers

 2’s Complement Numbers

199 /

65

FA

x3 x2 x1 x0

FAFAFA

y3 y2 y1 y0

S3 S2 S1 S0

C4 C3 C2 C1

0

Carry

FA

x3 x2 x1 x0

FAFAFA

y3 y2 y1 y0

S3 S2 S1 S0

C4 C3 C2 C1

0

Overflow

Decoders

 Extract “Information” from the code

 Binary Decoder

◆ Example: 2-bit Binary Number

200 /

65

Binary

Decoder

x1

x0

Only one

lamp will

turn on

0

0

1

0

0

0

10 2 3

Decoders

 2-to-4 Line Decoder

201 /

65

I1 I0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

B
in

a
ry

D
ec

o
d
erI1

I0

y3

y2

y1

y0

I1

I0

Y3

Y2

Y1

Y0

013 IIY =
012 IIY =

011 IIY = 010 IIY =

Decoders

 3-to-8 Line Decoder

202 /

65

B
in

a
ry

D
ec

o
d
e
r

I2

I1

I0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

I2

I0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

I1

012 III=

012 III=

012 III=

012 III=

012 III=

012 III=

012 III=

012 III=

Decoders

 “Enable” Control

203 /

65

B
in

a
ry

D
ec

o
d
erI1

I0

E

Y3

Y2

Y1

Y0

E I1 I0 Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

E
I0

Y3

Y2

Y1

Y0

I1

Decoders

 Expansion

204 /

65

I2 I1 I0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

I2 I1 I0

B
in

a
ry

D
ec

o
d
erI0

I1

E

Y3

Y2

Y1

Y0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

B
in

a
ry

D
ec

o
d
erI0

I1

E

Y3

Y2

Y1

Y0

Decoders

 Active-High / Active-Low

205 /

65

I1 I0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

I1 I0 Y3 Y2 Y1 Y0

0 0 1 1 1 0

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 1 1 1

B
in

a
ry

D
ec

o
d
erI1

I0

Y3

Y2

Y1

Y0
I1

I0

Y3

Y2

Y1

Y0

B
in

a
ry

D
ec

o
d
erI1

I0

Y3

Y2

Y1

Y0

Implementation Using Decoders

 Each output is a minterm

 All minterms are produced

 Sum the required minterms

Example: Full Adder

S(x, y, z) = ∑(1, 2, 4, 7)

C(x, y, z) = ∑(3, 5, 6, 7)

206 /

65

I2

I1

I0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Binary
Decoder

x

y

z

S C

Implementation Using Decoders

207 /

65

I2

I1

I0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Binary
Decoder

x

y

z

S C

I2

I1

I0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Binary
Decoder

x

y

z

S C

Encoders

 Put “Information” into code

 Binary Encoder

◆ Example: 4-to-2 Binary Encoder

208 /

65

x3 x2 x1 y1 y0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

1 0 0 1 1

1

2

3

Binary

Encoder

y1

y0

x1

x2

x3

Only one

switch

should be

activated

at a time

Encoders

 Octal-to-Binary Encoder (8-to-3)

209 /

65

I7 I6 I5 I4 I3 I2 I1 I0 Y2 Y1 Y0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

B
in

a
ry

E
n

co
d
er Y2

Y1

Y0

I7

I6

I5

I4

I3

I2

I1

I0

13570

23671

45672

IIIIY

IIIIY

IIIIY

+++=

+++=

+++=

I7

I6

I5

I4

I3

I2

I1

I0

Y2

Y1

Y0

Priority Encoders

 4-Input Priority Encoder

210 /

65

I3 I2 I1 I0 Y1 Y0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 x 0 1 1

0 1 x x 1 0 1

1 x x x 1 1 1

P
ri

o
ri

ty

E
n

co
d
er V

Y1

Y0

I3

I2

I1

I0

I0

I1

I2

I3

Y1

Y0

V

0123

1230

231

IIIIV

IIIY

IIY

+++=

+=

+=
Y1

I1

1 1 1 1
I2

I3

1 1 1 1

1 1 1 1

I0

Encoder / Decoder Pairs

211 /

65

Y2

Y1

Y0

I7

I6

I5

I4

I3

I2

I1

I0

I2

I1

I0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Binary

Encoder

Binary

Decoder

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Week -13
Page(213-227)

212

Multiplexers

213 /

65

MUX Y

I0

I1

I2

I3 S1 S0

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

Multiplexers

 2-to-1 MUX

 4-to-1 MUX

214 /

65

MUX Y
I0

I1
S

I1

I0

S

Y

MUX Y

I0

I1

I2

I3 S1 S0

I1

I0

S1

Y
I2

I3

S0

Multiplexers

 Quad 2-to-1 MUX

215 /

65

MUX Y
I0

I1 S

MUX Y
I0

I1 S

MUX Y
I0

I1 S

MUX Y
I0

I1 S

x3

x2

x1

x0

y3

y2

y1

y0

S

Y3

Y2

Y1

Y0

S E

A3

A2

A1

A0

B3

B2

B1

B0

MUX

A3

A2

A1

A0

S E

Y3

Y2

Y1

Y0
B3

B2

B1

B0

Multiplexers

 Quad 2-to-1 MUX

216 /

65

Y3

Y2

Y1

Y0

S E

A3

A2

A1

A0

B3

B2

B1

B0

MUX

A3

A2

A1

A0

S E

Y3

Y2

Y1

Y0

B3

B2

B1

B0

Extra

Buffers

Implementation Using Multiplexers

 Example

F(x, y) = ∑(0, 1, 3)

217 /

65

MUX Y

I0

I1

I2

I3 S1 S0

x y F

0 0 1

0 1 1

1 0 0

1 1 1
x y

F

1

1

0

1

Implementation Using Multiplexers

 Example

F(x, y, z) = ∑(1, 2, 6, 7)

218 /

65

x y z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

MUX Y

I0

I1

I2

I3

I4

I5

I6

I7
S2 S1 S0

x y z

0

1

1

0

0

0

1

1

F

Implementation Using Multiplexers

 Example

F(x, y, z) = ∑(1, 2, 6, 7)

219 /

65

MUX Y

I0

I1

I2

I3 S1 S0

x y z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

x y

FF = z
z

F = z

z

F = 0

0

F = 1

1

MUX Y

I0

I1

I2

I3

I4

I5

I6

I7
S2 S1 S0

Implementation Using Multiplexers

 Example

F(A, B, C, D) = ∑(1, 3, 4, 11, 12, 13, 14, 15)

220 /

65

A B C D F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1 A B C

F

F = D
D

F = D
D

F = D

D

F = 0

0

F = 0

F = D

F = 1

F = 1

0

D

1

1

Y

I0

I1

I2

I3

I4

I5

I6

I7

S2 S1 S0

Multiplexer Expansion

 8-to-1 MUX using Dual 4-to-1 MUX

221 /

65

MUX Y

I0

I1

I2

I3 S1 S0

MUX Y

I0

I1

I2

I3 S1 S0

MUX Y
I0

I1
S

0 01

DeMultiplexers

222 /

65

DeMUXI

Y3

Y2

Y1

Y0S1 S0

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

I

Y3

Y2

Y1

Y0

S0

S1

Multiplexer / DeMultiplexer Pairs

223 /

65

Y

I7

I6

I5

I4

I3

I2

I1

I0

I

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

MUX DeMUX

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

S2 S1 S0 S2 S1 S0

x2 x1 x0 y2 y1 y0

Synchronize

DeMultiplexers / Decoders

224 /

65
B

in
a
ry

D
ec

o
d
erI1

I0

E

Y3

Y2

Y1

Y0

E I1 I0 Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

DeMUXI

Y3

Y2

Y1

Y0S1 S0

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

Three-State Gates

 Tri-State Buffer

 Tri-State Inverter

225 /

65

A Y

C

C A Y

0 x Hi-Z

1 0 0

1 1 1

A Y

C

Three-State Gates

226 /

65

A

Y
C

B

D

C D Y

0 0 Hi-Z

0 1 B

1 0 A

1 1 ?

Not Allowed

Y=

A

C

B

A if C = 1

B if C = 0

Three-State Gates

227 /

65

I0

Y

E

S1

I1

I2

I3

B
in

a
ry

D
ec

o
d

erI1

I0

E

Y3

Y2

Y1

Y0

S0

Week -14
Page(229-243)

228

Sequential Circuits

 Asynchronous

 Synchronous

229

Combinational

Circuit
Memory

Elements

Inputs Outputs

Combinational

Circuit

Flip-flops

Inputs Outputs

Clock

A synchronous circuit is a digital circuit in

which the parts are synchronized by a clock

signal.

http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Clock_signal

Latches

 SR Latch

230

R

S

Q

Q

S R Q

0 0 Q0

0 1 0

1 0 1

1 1 Q=Q’=0

No change

Reset

Set

Invalid

S

R

Q

Q

S R Q

0 0 Q=Q’=1

0 1 1

1 0 0

1 1 Q0

Invalid

Set

Reset

No change

Latches

 SR Latch

231

R

S

Q

Q

S R Q

0 0 Q0

0 1 0

1 0 1

1 1 Q=Q’=0

No change

Reset

Set

Invalid

S’ R’ Q

0 0 Q=Q’=1

0 1 1

1 0 0

1 1 Q0

Invalid

Set

Reset

No change

S

R

Q

Q

Controlled Latches

 SR Latch with Control Input

232

C S R Q

0 x x Q0

1 0 0 Q0

1 0 1 0

1 1 0 1

1 1 1 Q=Q’

No change

No change

Reset

Set

Invalid

S

R

Q

Q

S

R

C

S

R
Q

Q
S

R

C

Controlled Latches

 D Latch (D = Data)

233

C D Q

0 x Q0

1 0 0

1 1 1

No change

Reset

Set

S

R

Q

Q

D

C

C

Timing Diagram

D

Q

t

Output may

change

Controlled Latches

 D Latch (D = Data)

234

C D Q

0 x Q0

1 0 0

1 1 1

No change

Reset

Set

C

Timing Diagram

D

Q

Output may

change

S

R

Q

Q

D

C

Flip-Flops

 Controlled latches are level-triggered

 Flip-Flops are edge-triggered

235

C

CLK Positive Edge

CLK Negative Edge

Flip-Flops

 Master-Slave D Flip-Flop

236

D Latch

(Master)

D

C

Q
D Latch

(Slave)

D

C

Q QD

CLK
CLK

D

QMaster

QSlave

Looks like it is negative

edge-triggered

Master Slave

Flip-Flops

 Edge-Triggered D Flip-Flop

237

D

CLK

Q

Q

D Q

Q

D Q

Q

Positive Edge

Negative Edge

Flip-Flops

 JK Flip-Flop

238

D Q

Q

Q

QCLK

J

K

J Q

QK

D = JQ’ + K’Q

Flip-Flops

 T Flip-Flop

239

D = TQ’ + T’Q = T  Q

J Q

QK

T D Q

Q

T

D = JQ’ + K’Q
T Q

Q

Flip-Flop Characteristic Tables

240

D Q

Q

D Q(t+1)

0 0

1 1

Reset

Set

J K Q(t+1)

0 0 Q(t)

0 1 0

1 0 1

1 1 Q’(t)

No change

Reset

Set

Toggle

J Q

QK

T Q

Q

T Q(t+1)

0 Q(t)

1 Q’(t)

No change

Toggle

Flip-Flop Characteristic Equations

241

D Q

Q

D Q(t+1)

0 0

1 1
Q(t+1) = D

J K Q(t+1)

0 0 Q(t)

0 1 0

1 0 1

1 1 Q’(t)

Q(t+1) = JQ’ + K’Q

J Q

QK

T Q

Q

T Q(t+1)

0 Q(t)

1 Q’(t)
Q(t+1) = T  Q

Flip-Flop Characteristic Equations

 Analysis / Derivation

242

J Q

QK

J K Q(t) Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

No change

Reset

Set

Toggle

Flip-Flop Characteristic Equations

 Analysis / Derivation

243

J Q

QK

J K Q(t) Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

K

0 1 0 0

J 1 1 0 1

Q

Q(t+1) = JQ’ + K’Q

Week -15
Page(245-265)

244

Analysis of Clocked Sequential Circuits

 State Equations

245

D Q

Q

CLK

D Q

Q

A

B

y

x

A(t+1) = DA

= A(t) x(t)+B(t) x(t)

= A x + B x

B(t+1) = DB

= A’(t) x(t)

= A’ x

 y(t) = [A(t)+ B(t)] x’(t)

= (A + B) x’

Analysis of Clocked Sequential Circuits

 State Table (Transition Table)

246

D Q

Q

CLK

D Q

Q

A

B

y

x

A(t+1) = A x + B x

B(t+1) = A’ x

 y(t) = (A + B) x’

Present

State
Input

Next

State
Output

A B x A B y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

t+1 tt

0 0 0

0 1 0

0 0 1

1 1 0

0 0 1

1 0 0

0 0 1

1 0 0

Analysis of Clocked Sequential Circuits

 State Table (Transition Table)

247

D Q

Q

CLK

D Q

Q

A

B

y

x

A(t+1) = A x + B x

B(t+1) = A’ x

 y(t) = (A + B) x’

Present

State

Next State Output

x = 0 x = 1 x = 0 x = 1

A B A B A B y y

0 0 0 0 0 1 0 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 1 0

1 1 0 0 1 0 1 0

t+1 tt

Analysis of Clocked Sequential
Circuits

 State Diagram
Present

State

Next State Output

x = 0 x = 1 x = 0 x = 1

A B A B A B y y

0 0 0 0 0 1 0 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 1 0

1 1 0 0 1 0 1 0

248

D Q

Q

CLK

D Q

Q

A

B

y

x

0 0 1 0

0 1 1 1

0/0

0/1

1/0

1/0

1/0

1/0 0/1

0/1

AB input/output

Analysis of Clocked Sequential Circuits

 D Flip-Flops

Example:

249

D Q

Q

x

CLK

y
A

Present

State
Input

Next

State

A x y A

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

1

0

1

0

0

1

0 100,11 00,11

01,10

01,10

A(t+1) = DA = A  x  y

Analysis of Clocked Sequential Circuits

 JK Flip-Flops

Example:

250

J Q

QK

CLK

J Q

QK

x

A

B

JA = B KA = B x’

JB = x’ KB = A  x

A(t+1) = JA Q’A + K’A QA

= A’B + AB’ + Ax

B(t+1) = JB Q’B + K’B QB

= B’x’ + ABx + A’Bx’

Present

State
I/P

Next

State

Flip-Flop

Inputs

A B x A B JA KA JB KB

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1 0

0 0 0 1

1 1 1 0

1 0 0 1

0 0 1 1

0 0 0 0

1 1 1 1

1 0 0 0

0 1

0 0

1 1

1 0

1 1

1 0

0 0

1 1

Analysis of Clocked Sequential Circuits

 JK Flip-Flops

Example:

251

J Q

QK

CLK

J Q

QK

x

A

BPresent

State
I/P

Next

State

Flip-Flop

Inputs

A B x A B JA KA JB KB

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 1 0

0 0 0 1

1 1 1 0

1 0 0 1

0 0 1 1

0 0 0 0

1 1 1 1

1 0 0 0

0 1

0 0

1 1

1 0

1 1

1 0

0 0

1 1

0 0 1 1

0 1 1 0

1 0 1

0

1

0
0

1

Analysis of Clocked Sequential Circuits

 T Flip-Flops

Example:

252

TA = B x TB = x

y = A B

A(t+1) = TA Q’A + T’A QA

= AB’ + Ax’ + A’Bx

B(t+1) = TB Q’B + T’B QB

= x  B

A

B

T Q

QR

T Q

QR

CLK Reset

x
y

Present

State
I/P

Next

State

F.F

Inputs
O/P

A B x A B TA TB y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0

0 1

0 0

1 1

0 0

0 1

0 0

1 1

0 0

0 1

0 1

1 0

1 0

1 1

1 1

0 0

0

0

0

0

0

0

1

1

Analysis of Clocked Sequential Circuits

 T Flip-Flops

Example:

253

A

B

T Q

QR

T Q

QR

CLK Reset

x
y

Present

State
I/P

Next

State

F.F

Inputs
O/P

A B x A B TA TB y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0

0 1

0 0

1 1

0 0

0 1

0 0

1 1

0 0

0 1

0 1

1 0

1 0

1 1

1 1

0 0

0

0

0

0

0

0

1

1

0 0 0 1

1 1 1 0

0/0

1/0

0/0

1/0

1/0

1/1

0/00/1

Mealy and Moore Models

 The Mealy model: the outputs are functions of both the present

state and inputs (Fig. 5-15).

◆ The outputs may change if the inputs change during the clock pulse

period.

» The outputs may have momentary false values unless the

inputs are synchronized with the clocks.

 The Moore model: the outputs are functions of the present state

only (Fig. 5-20).

◆ The outputs are synchronous with the clocks.

Mealy and Moore Models

Fig. 5.21 Block diagram of Mealy and Moore state machine

Mealy and Moore Models

256

Present

State
I/P

Next

State
O/P

A B x A B y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 1 0 0

Mealy

For the same state,

the output changes with the input

Present

State
I/P

Next

State
O/P

A B x A B y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 1 0

0 1 1 1 0 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 1

Moore

For the same state,

the output does not change with the input

Moore State Diagram

257

State / Output

0 0 / 0 0 1 / 0

1 1 / 1 1 0 / 0

0

1

1

1

00

0

1

State Reduction and Assignment

 State Reduction Reductions on

the number of flip-flops and

the number of gates.

◆ A reduction in the number of

states may result in a reduction in

the number of flip-flops.

◆ An example state diagram

showing in Fig. 5.25.

Fig. 5.25 State diagram

State Reduction

◆ Only the input-output sequences

are important.

◆ Two circuits are equivalent

» Have identical outputs

for all input sequences;

» The number of states is

not important.

Fig. 5.25 State diagram

State: a a b c d e f f g f g a

Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 0 1 1 0 1 0 0

 Equivalent states

◆ Two states are said to be equivalent

» For each member of the set of inputs, they give exactly

the same output and send the circuit to the same state or

to an equivalent state.

» One of them can be removed.

 Reducing the state table

◆ e = g (remove g);

◆ d = f (remove f);

◆ The reduced finite state machine

State: a a b c d e d d e d e a

Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 0 1 1 0 1 0 0

◆ The checking of each pair of

states for possible

equivalence can be done

systematically using

Implication Table.

◆ The unused states are treated

as don't-care condition 

fewer combinational gates.

Fig. 5.26 Reduced State diagram

State Assignment

 State Assignment

 To minimize the cost of the combinational circuits.

◆ Three possible binary state assignments. (m states need n-bits, where 2n

> m)

◆ Any binary number assignment is satisfactory as long as each state is

assigned a unique number.

◆ Use binary assignment 1.

Week -16
Page(267-273)

266

Design Procedure

 Design Procedure for sequential circuit

◆ The word description of the circuit behavior to get a state diagram;

◆ State reduction if necessary;

◆ Assign binary values to the states;

◆ Obtain the binary-coded state table;

◆ Choose the type of flip-flops;

◆ Derive the simplified flip-flop input equations and output equations;

◆ Draw the logic diagram;

Design of Clocked Sequential Circuits

 Example:

Detect 3 or more consecutive 1’s

268

S0 / 0 S1 / 0

S3 / 1 S2 / 0

0

1

1

0
0

1

0

1

State A B

S0 0 0

S1 0 1

S2 1 0

S3 1 1

Design of Clocked Sequential Circuits

 Example:

Detect 3 or more consecutive 1’s

269

Present

State
Input

Next

State
Output

A B x A B y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 1 0

0 0 0

1 0 0

0 0 0

1 1 0

0 0 1

1 1 1

S0 / 0 S1 / 0

S3 / 1 S2 / 0

0

1

1

0
0

1

0

1

Design of Clocked Sequential Circuits

 Example:

Detect 3 or more consecutive 1’s

270

Present

State
Input

Next

State
Output

A B x A B y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 1 0

0 0 0

1 0 0

0 0 0

1 1 0

0 0 1

1 1 1

A(t+1) = DA (A, B, x)

 = ∑ (3, 5, 7)

B(t+1) = DB (A, B, x)

 = ∑ (1, 5, 7)

y (A, B, x) = ∑ (6, 7)

Synthesis using D Flip-Flops

Design of Clocked Sequential Circuits
with D F.F.

 Example:

Detect 3 or more consecutive 1’s

271

DA (A, B, x) = ∑ (3, 5, 7)

= A x + B x

DB (A, B, x) = ∑ (1, 5, 7)

= A x + B’ x

y (A, B, x) = ∑ (6, 7)

= A B

Synthesis using D Flip-Flops

B

0 0 1 0

A 0 1 1 0

x B

0 1 0 0

A 0 1 1 0

x
B

0 0 0 0

A 0 0 1 1

x

Design of Clocked Sequential Circuits
with D F.F.

 Example:

Detect 3 or more consecutive 1’s

272

DA = A x + B x

DB = A x + B’ x

y = A B

Synthesis using D Flip-Flops

D Q

Q

A

CLK

x

BD Q

Q

y

Flip-Flop Excitation Tables

273

Present

State

Next

State

F.F.

Input

Q(t) Q(t+1) D

0 0

0 1

1 0

1 1

Present

State

Next

State

F.F.

Input

Q(t) Q(t+1) J K

0 0

0 1

1 0

1 1

0 0 (No change)

0 1 (Reset)
0 x

1 x

x 1

x 0

0

1

0

1

1 0 (Set)

1 1 (Toggle)

0 1 (Reset)

1 1 (Toggle)

0 0 (No change)

1 0 (Set)

Q(t) Q(t+1) T

0 0

0 1

1 0

1 1

0

1

1

0

Week -17
Page(275-280)

274

Design of Clocked Sequential Circuits
with JK F.F.

 Example:

Detect 3 or more consecutive 1’s

275

Present

State
Input

Next

State

Flip-Flop

Inputs

A B x A B JA KA JB KB

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

0 x

0 x

0 x

1 x

x 1

x 0

x 1

x 0

JA (A, B, x) = ∑ (3)

dJA (A, B, x) = ∑ (4,5,6,7)

KA (A, B, x) = ∑ (4, 6)

dKA (A, B, x) = ∑ (0,1,2,3)

JB (A, B, x) = ∑ (1, 5)

dJB (A, B, x) = ∑ (2,3,6,7)

KB (A, B, x) = ∑ (2, 3, 6)

dKB (A, B, x) = ∑ (0,1,4,5)

Synthesis using JK F.F.

0 x

1 x

x 1

x 1

0 x

1 x

x 1

x 0

Design of Clocked Sequential Circuits
with JK F.F.

 Example:

Detect 3 or more consecutive 1’s

276

JA = B x KA = x’

JB = x KB = A’ + x’

Synthesis using JK Flip-Flops

B

0 0 1 0

A x x x x

x

B

x x x x

A 1 0 0 1

x

B

0 1 x x

A 0 1 x x

x

B

x x 1 1

A x x 0 1

x

CLK

J Q

QK

x

A

B

J Q

QK y

Design of Clocked Sequential Circuits
with T F.F.

 Example:

Detect 3 or more consecutive 1’s

277

Present

State
Input

Next

State

F.F.

Input

A B x A B TA TB

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

0

0

0

1

1

0

1

0

Synthesis using T Flip-Flops

0

1

1

1

0

1

1

0

TA (A, B, x) = ∑ (3, 4, 6)

TB (A, B, x) = ∑ (1, 2, 3, 5, 6)

Design of Clocked Sequential Circuits
with T F.F.

 Example:

Detect 3 or more consecutive 1’s

278

TA = A x’ + A’ B x

TB = A’ B + B  x

Synthesis using T Flip-Flops

B

0 0 1 0

A 1 0 0 1

x

B

0 1 1 1

A 0 1 0 1

x

A

B

y

T Q

Q

x

CLK

T Q

Q

Design of Counters

279

Count sequence Flip-Flop inputs

A2 A1 A0
TA2 TA1 TA0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

TA2 = A1 A0 TA1 = A0

TA0 = 1

Synthesis using T Flip-Flops

x

Count Pulse

A0

T Q

Q

T Q

Q

T Q

Q

A1

A2

1

0 0 1

0 1 1

0 0 1

1 1 1

0 0 1

0 1 1

0 0 1

1 1 1

Design of Counters

280

Count sequence Flip-Flop inputs

A B C JA KA JB KB JC KC

0 0 0 0 X 0 X 1 X

0 0 1 0 X 1 X X 1

0 1 0 1 X X 1 0 X

1 0 0 X 0 0 X 1 X

1 0 1 X 0 1 X X 1

1 1 0 X 1 X 1 0 X

JA = B KA = B

JB = C KB = 1

JC = B/ KC = 1

Synthesis using JK Flip-Flops

x

Prepared By- Noor Md Shahriar, Senior Lecturer, Dept. of EEE, UGV 281

	Slide 1
	Slide 2
	Slide 3: Digital Electronics (EEE-0714-2109)
	Slide 4: Continuous Assessment Strategy
	Slide 5
	Slide 6: Course Learning Outcome (CLO)
	Slide 7: SYNOPSIS / RATIONALE
	Slide 8: Course objectives
	Slide 9
	Slide 10
	Slide 11: Course Schedule (Contd.)
	Slide 12: Course Schedule (Contd.)
	Slide 13: Course Schedule (Contd.)
	Slide 14: REFERENCE BOOK
	Slide 15
	Slide 16: Basic Definition
	Slide 17: Why study this subject?
	Slide 18: Applications of Digital Electronics / Logic Design
	Slide 19: Applications of Digital Electronics / Logic Design
	Slide 20: Applications of Digital Electronics / Logic Design
	Slide 21: Applications of Digital Electronics / Logic Design
	Slide 22: Outline of Chapter 1
	Slide 23: Analog and Digital Signal
	Slide 24: Binary Digital Signal
	Slide 25: Decimal Number System
	Slide 26: Octal Number System
	Slide 27: Binary Number System
	Slide 28: Hexadecimal Number System
	Slide 29: The Power of 2
	Slide 30: Addition
	Slide 31: Binary Addition
	Slide 32: Binary Subtraction
	Slide 33: Binary Multiplication
	Slide 34: Binary Division
	Slide 35: Number Base Conversions
	Slide 36
	Slide 37: Decimal (Integer) to Binary Conversion
	Slide 38: Decimal (Fraction) to Binary Conversion
	Slide 39: Decimal to Octal Conversion
	Slide 40: Binary − Octal Conversion
	Slide 41: Binary − Hexadecimal Conversion
	Slide 42: Octal − Hexadecimal Conversion
	Slide 43: Decimal, Binary, Octal and Hexadecimal
	Slide 44: 1.5 Complements
	Slide 45: Complements
	Slide 46
	Slide 47: Complements
	Slide 48: Complements
	Slide 49: Complements
	Slide 50: Complements
	Slide 51: Complements
	Slide 52: Complements
	Slide 53: 1.6 Signed Binary Numbers
	Slide 54: Signed Binary Numbers
	Slide 55: Signed Binary Numbers
	Slide 56: Signed Binary Numbers
	Slide 57
	Slide 58: 1.7 Binary Codes
	Slide 59: Binary Code
	Slide 60: Binary Code
	Slide 61: Binary Codes
	Slide 62: Binary Codes)
	Slide 63: Binary Codes
	Slide 64: Binary Codes
	Slide 65: ASCII Character Codes
	Slide 66: ASCII Properties
	Slide 67: Binary Codes
	Slide 68: Binary Codes
	Slide 69: 1.8 Binary Storage and Registers
	Slide 70: A Digital Computer Example
	Slide 71: Transfer of information
	Slide 72: Transfer of information
	Slide 73: 1.9 Binary Logic
	Slide 74: Binary Logic
	Slide 75: Binary Logic
	Slide 76: Binary Logic
	Slide 77: Switching Circuits
	Slide 78: Binary Logic
	Slide 79: Binary Logic
	Slide 80: Binary Logic
	Slide 81
	Slide 82: Algebras
	Slide 83: BASIC DEFINITIONS
	Slide 84: BASIC DEFINITIONS
	Slide 85: BASIC DEFINITIONS
	Slide 86: George Boole
	Slide 87: Axiomatic Definition of Boolean Algebra
	Slide 88: Boolean Algebra
	Slide 89: Postulates of Two-Valued Boolean Algebra
	Slide 90: Postulates of Two-Valued Boolean Algebra
	Slide 91: Postulates of Two-Valued Boolean Algebra
	Slide 92: Duality
	Slide 93: Basic Theorems
	Slide 94: Boolean Theorems
	Slide 95: Proof of x+x=x
	Slide 96: Proof of x·x=x
	Slide 97: Proof of x+1=1
	Slide 98: Absorption Property (Covering)
	Slide 99: DeMorgan’s Theorem
	Slide 100: Consensus Theorem
	Slide 101: Operator Precedence
	Slide 102: Boolean Functions
	Slide 103: Boolean Functions
	Slide 104: Boolean Functions
	Slide 105
	Slide 106: Algebraic Manipulation
	Slide 107: Complement of a Function
	Slide 108: Examples
	Slide 109: 2.6 Canonical and Standard Forms
	Slide 110: Minterms and Maxterms
	Slide 111: Minterms and Maxterms
	Slide 112: Minterms and Maxterms
	Slide 113: Sum of Minterms
	Slide 114: Product of Maxterms
	Slide 115: Conversion between Canonical Forms
	Slide 116
	Slide 117: Standard Forms
	Slide 118: Implementation
	Slide 119: 2.7 Other Logic Operations (
	Slide 120: Boolean Expressions
	Slide 121
	Slide 122: 2.8 Digital Logic Gates
	Slide 123: Standard Gates
	Slide 124: Summary of Logic Gates
	Slide 125
	Slide 126: Multiple Inputs
	Slide 127: Multiple Inputs
	Slide 128: Multiple Inputs
	Slide 129: Multiple Inputs
	Slide 130: Positive and Negative Logic
	Slide 131: Positive and Negative Logic
	Slide 132: 2.9 Integrated Circuits
	Slide 133: Digital Logic Families
	Slide 134: Digital Logic Families
	Slide 135: CAD
	Slide 136: Chip Design
	Slide 137
	Slide 138: 3-1 Introduction
	Slide 139: 3-2 The Map Method
	Slide 140: Review of Boolean Function
	Slide 141: Two-Variable Map
	Slide 142: A Three-variable Map
	Slide 143: A Three-variable Map
	Slide 144: Example 3.1
	Slide 145: Example 3.2
	Slide 146: Four adjacent Squares
	Slide 147: Example 3.3
	Slide 148: Example 3.4
	Slide 149: 3.3 Four-Variable Map
	Slide 150: Example 3.5
	Slide 151: Example 3.6
	Slide 152: Prime Implicants
	Slide 153: Prime Implicants
	Slide 154: 3.4 Five-Variable Map
	Slide 155: Example 3.7
	Slide 156: 3-5 Product of Sums Simplification
	Slide 157: Example 3.8
	Slide 158: Example 3.8 (cont.)
	Slide 159: Sum-of-Minterm Procedure
	Slide 160
	Slide 161: 3-6 Don't-Care Conditions
	Slide 162: Example 3.9 (cont.)
	Slide 163: 3-7 NAND and NOR Implementation
	Slide 164: NAND Gate
	Slide 165: Example 3.10
	Slide 166: Multilevel NAND Circuits
	Slide 167: NAND Implementation
	Slide 168: NOR Implementation
	Slide 169: Two Graphic Symbols for a NOR Gate
	Slide 170: Example
	Slide 171: 3-8 Other Two-level Implementations (
	Slide 172: AND-OR-Invert Implementation
	Slide 173: OR-AND-Invert Implementation
	Slide 174
	Slide 175: Exclusive-OR Implementations
	Slide 176: Odd Function
	Slide 177: XOR and XNOR
	Slide 178: Parity Generation and Checking
	Slide 179: Parity Generation and Checking
	Slide 180: Combinational Circuits
	Slide 181: Combinational Circuits
	Slide 182: Analysis Procedure
	Slide 183: Analysis Procedure
	Slide 184: Design Procedure
	Slide 185
	Slide 186: Design Procedure
	Slide 187: Design Procedure
	Slide 188: Seven-Segment Decoder
	Slide 189
	Slide 190: Binary Adder
	Slide 191: Binary Adder
	Slide 192: Binary Adder
	Slide 193: Binary Adder
	Slide 194: Binary Adder
	Slide 195: Binary Adder
	Slide 196:
	Slide 197: Binary Subtractor
	Slide 198: Binary Adder/Subtractor
	Slide 199: Overflow
	Slide 200: Decoders
	Slide 201: Decoders
	Slide 202: Decoders
	Slide 203: Decoders
	Slide 204: Decoders
	Slide 205: Decoders
	Slide 206: Implementation Using Decoders
	Slide 207: Implementation Using Decoders
	Slide 208: Encoders
	Slide 209: Encoders
	Slide 210: Priority Encoders
	Slide 211: Encoder / Decoder Pairs
	Slide 212
	Slide 213: Multiplexers
	Slide 214: Multiplexers
	Slide 215: Multiplexers
	Slide 216: Multiplexers
	Slide 217: Implementation Using Multiplexers
	Slide 218: Implementation Using Multiplexers
	Slide 219: Implementation Using Multiplexers
	Slide 220: Implementation Using Multiplexers
	Slide 221: Multiplexer Expansion
	Slide 222: DeMultiplexers
	Slide 223: Multiplexer / DeMultiplexer Pairs
	Slide 224: DeMultiplexers / Decoders
	Slide 225: Three-State Gates
	Slide 226: Three-State Gates
	Slide 227: Three-State Gates
	Slide 228
	Slide 229: Sequential Circuits
	Slide 230: Latches
	Slide 231: Latches
	Slide 232: Controlled Latches
	Slide 233: Controlled Latches
	Slide 234: Controlled Latches
	Slide 235: Flip-Flops
	Slide 236: Flip-Flops
	Slide 237: Flip-Flops
	Slide 238: Flip-Flops
	Slide 239: Flip-Flops
	Slide 240: Flip-Flop Characteristic Tables
	Slide 241: Flip-Flop Characteristic Equations
	Slide 242: Flip-Flop Characteristic Equations
	Slide 243: Flip-Flop Characteristic Equations
	Slide 244
	Slide 245: Analysis of Clocked Sequential Circuits
	Slide 246: Analysis of Clocked Sequential Circuits
	Slide 247: Analysis of Clocked Sequential Circuits
	Slide 248: Analysis of Clocked Sequential Circuits
	Slide 249: Analysis of Clocked Sequential Circuits
	Slide 250: Analysis of Clocked Sequential Circuits
	Slide 251: Analysis of Clocked Sequential Circuits
	Slide 252: Analysis of Clocked Sequential Circuits
	Slide 253: Analysis of Clocked Sequential Circuits
	Slide 254: Mealy and Moore Models
	Slide 255: Mealy and Moore Models
	Slide 256: Mealy and Moore Models
	Slide 257: Moore State Diagram
	Slide 258: State Reduction and Assignment
	Slide 259: State Reduction
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264: State Assignment
	Slide 265
	Slide 266
	Slide 267: Design Procedure
	Slide 268: Design of Clocked Sequential Circuits
	Slide 269: Design of Clocked Sequential Circuits
	Slide 270: Design of Clocked Sequential Circuits
	Slide 271: Design of Clocked Sequential Circuits with D F.F.
	Slide 272: Design of Clocked Sequential Circuits with D F.F.
	Slide 273: Flip-Flop Excitation Tables
	Slide 274
	Slide 275: Design of Clocked Sequential Circuits with JK F.F.
	Slide 276: Design of Clocked Sequential Circuits with JK F.F.
	Slide 277: Design of Clocked Sequential Circuits with T F.F.
	Slide 278: Design of Clocked Sequential Circuits with T F.F.
	Slide 279: Design of Counters
	Slide 280: Design of Counters
	Slide 281

